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Chapter 1

Preface

The coupling method is known as one of the few purely probabilistic techniques in

mathematics. In combination with other methods, the coupling has been an effective

tool in solving a variety of mathematical problems. For example, coupling can be

used for proving limit theorems, or uniqueness of limit measures. In the theory of

interacting particle systems, coupling is used for proving main invariance results.

See [38] and [39]. The history of the coupling method dates back to the work of

Doeblin [18] as documented by Lindvall [40], where a fascimile of parts of [18] are

included in the Epilogue. The renewed interest in the coupling method was sparked

by the reemergence of the mixing times [37]. Besides being used for proving the

convergence results for Markov processes, the coupling method is also used for

estimating the speed of convergence, characterized by the mixing times.

The theory of mixing times addresses a fundamental question that lies at the heart

of statistical mechanics. How quickly does a physical system relax to equilibrium?

A related problem arises in computational statistical physics concerning the accu-

racy of computer simulations of equilibrium data. One typically carries out such

simulations by running Glauber dynamics or the closely related Metropolis algo-

rithm, in which case the theory of mixing times allows one to quantify the running

time required by the simulation.

An important question driving the work in the field is the relationship between the

mixing times of the dynamics and the equilibrium phase transition structure of the

corresponding statistical mechanical models. The path coupling method introduced

by Bubley and Dyer [6] is a powerful tool in the theory of mixing times of Markov

chains in which rapid mixing can be proved by showing that the mean coupling

distance contracts between all neighboring configurations of a minimal path con-

necting two arbitrary configurations. Many results for statistical mechanical models

that exhibit a continuous phase transition were obtained by a direct application of

the standard path coupling method.

For models that exhibit a first-order / discontinuous phase transition, the standard

path coupling method did not work. Thus, the path coupling method needed to be

extended for the cases when the mean coupling distance did not contract for some of

1
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the neighboring configurations. This extension, developed in [34, 35, 31], is referred

to as aggregate path coupling. The aggregate path coupling method extends the use

of the path coupling technique in the absence of contraction of the mean coupling

distance between all neighboring configurations of a statistical mechanical model.

In this monograph, we show how to combine aggregate path coupling and large

deviation theory [21] to determine the mixing times of a large class of statistical

mechanical models, including those that exhibit a first-order phase transition. Our

primary objective is to characterize the assumptions required to apply the method

of aggregate path coupling.

In this monograph, the complete theory of aggregate path coupling is presented.

While many of the results were first introduced in original research papers, here

they are presented in a unifying theory, in greater generality, and with complete and

precise background, so that the book can serve as a stand alone reference for the

theory of path coupling and aggregate path coupling. The monograph is organized

as follows. Chapter 2 begins with an overview on mixing times, coupling, and maxi-

mal coupling. There, we introduce synchronized maximal coupling of three random

variables, and examine its applicability in Lemma 4.1 and Corollary 4.3, which we

then use to rigorously justify the path coupling method. Chapter 2 ends with Sec-

tion 8, where Theorem 8.1 that encompasses the main steps in the aggregate path

coupling method is proven.

A class of statistical mechanical models considered in this monograph is defined

in Chapter 3. There, Glauber dynamics is introduced, and distinct types of phase-

transition are discussed in Section 11. The two types of phase transition, continuous

and first-order, are rigorously defined in Chapter 4, which covers large deviation

theory and equilibrium macrostates for the statistical mechanical models in Chapter

3.

Chapter 5 provides an example of successful use of path coupling (i.e. identify-

ing the parameter region of fast mixing) in the Curie-Weiss model, which exhibits

continuous phase transition. In the chapters following Chapter 5, we define and

characterize the aggregate path coupling method for three classes of models. First,

in Chapter 6, we cover the the simpler setting, where the macroscopic quantity for

the model is one dimensional. Then in Chapter 7, we generalize the ideas of Chapter

6 to a large class of statistical mechanical models with macroscopic quantities that

are higher dimensional, including the mixing time results in Section 21 of Chapter

7 for a Glauber dynamics that converges to the so-called generalized Potts model on

the complete graph. Finally, in Chapter 8, we develop the aggregate path coupling

theory for the case where the underlying graph of the model is bipartite graph Kn,n.

Parts of this monograph are based on the collaboration [31] with José Cerda

Hernández. We would like to acknowledge the continued support and encourage-

ments for this work we received from Richard S. Ellis and Ed Waymire. We would

like to thank Jon Machta for providing us with valuable advice on how to introduce

phase transition in this monograph. Many people attended our presentations and pro-

vided their feedback and perspectives. Among them were Thomas M. Liggett, Amir
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Dembo, Robert M. Burton, Enrique Thomann, Zhen-Qing Chen, Anatoly Yambart-

sev, Sourav Chatterjee, and many others. We thank Bruno Barbosa, a doctoral stu-

dent at Oregon State University, for pointing out a number of inaccuracies in an

earlier draft. Finally, we would like to thank the anonymous referees for providing

us with important comments and motivating remarks. This work was supported in

part by the NSF award DMS-1412557.





Chapter 2

Coupling, path coupling, and mixing times

In this chapter, we first define coupling and the connection to mixing times of

Markov chains via the coupling inequality. We then motivate the method of path

coupling with a card shuffling example. In the remaining sections we provide the

complete derivation of the path coupling method in full generality and include the

definition of the greedy coupling which is the particular coupling used for the sta-

tistical mechanical models discussed in this monograph. This will be done in an

alternative, and in our opinion, more rigorous way than usually employed.

The mixing time is a measure of convergence of a Markov chain to its stationary

distribution and is defined in terms of the total variation distance.

Definition 0.1 Consider two probability measures µ and ν on a measurable space

(Ω ,Σ), where Ω denotes the space and Σ is a σ -algebra. The total variation dis-

tance between µ and ν is defined as

kν �µkTV = sup
A2Σ

|ν(A)�µ(A)|= sup
A2Σ

�
ν(A)�µ(A)

�
.

There is an alternative equivalent definition.

Definition 0.2 Let

gν =
dν

d(ν +µ)
and gµ =

dµ

d(ν +µ)

be the Radon-Nikodym derivatives. Then, the total variation distance between µ

and ν is defined as

kµ �νkTV =
1

2

Z

Ω

|gν �gµ |d(ν +µ).

It follows that for a discrete state space Ω ,

kµ �νkTV =
1

2
∑

x2Ω

|µ(x)�ν(x)|.

5
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Given the convergence of the Markov chain to its stationary distribution π , we define

the maximal distance to stationarity to be

d(t) = max
x2Ω

kPt(x, ·)�πkTV

where Pt(x, ·) is the transition probability of the Markov chain after t steps, starting

in configuration x. Rather than obtaining bounds on d(t), it is sometimes easier to

bound the standardized maximal distance defined by

d̄(t) := max
x,y2Ω

kPt(x, ·)�Pt(y, ·)kTV (1)

which satisfies the following result.

Lemma 0.3 ([37] Lemma 4.11) With d(t) and d̄(t) defined above, we have

d(t) d̄(t) 2d(t).

Given ε > 0, the mixing time of the Markov chain is defined by

tmix(ε) = min{t : d(t) ε}

In the modern theory of Markov chains, the interest is in the mixing time as a func-

tion of the system size n. With only a handful of general techniques, rigorous analy-

sis of mixing times is difficult and the proof of exact mixing time asymptotics (with

respect to n) of even some basic chains remains elusive. See [37] for a survey on the

theory of mixing times.

Rates of mixing times are generally categorized into two groups: rapid mixing

which implies that the mixing time exhibits polynomial growth with respect to the

system size, and slow mixing which implies that the mixing time grows exponen-

tially with the system size. Determining the parameter region where a model under-

goes rapid mixing is of major importance, as it is in this region that the application

of the Glauber dynamics is physically feasible. The main application of the path

coupling and aggregate path coupling described in this monograph is to determine

the rapid mixing region for statistical mechanical models.

1 Coupling method

A coupling of two random variables X and Y with respective distributions ν and µ

over a the probability measure space (Ω ,Σ) is a joint distribution of the pair (X ,Y )
with values in the product space (Ω ⇥Ω ,Σ ⌦Σ) such that the marginal distribution

of X is µ and the marginal distribution of Y is ν . Here, Σ ⌦Σ is the smallest σ -

algebra containing all product sets A⇥ B for all A,B 2 Σ . The following simple

lemma contains the coupling inequality for random variables.
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Lemma 1.1 Consider a coupling (X ,Y ) of random variables X and Y with respec-

tive probability distributions ν and µ . Then,

kν �µkTV  P(X 6= Y ).

Proof. Observe that for any A 2 Σ ,

|ν(A)�µ(A)|=
��P(X 2 A)�P(Y 2 A)

��

=
��P(X 2 A,Y 62 A)�P(Y 2 A,X 62 A)

��
P(X 6= Y ).

Thus, by Definition 0.1,

kµ �νkTV = sup
A2Σ

|ν(A)�µ(A)| P(X 6= Y ).

There are many applications of couplings to the analysis of probability distributions

(see, e.g., [40, 15]), but we are interested in the extension of this idea to coupling of

Markov chains.

Definition 1.2 Consider a discrete time Markov process on a state space Ω with

the time homogeneous transition probability kernel {p(x,y)}x,y2Ω . We define a cou-

pling of two copies of a discrete time Markov process to be a stochastic process

(Xt ,Yt) on Ω ⇥Ω satisfying the following two properties:

• Both Xt and Yt evolve as a Markov process with the transition kernel p(x,y);
• Once together, i.e. Xt = Yt , the two margins will stay together.

The process (Xt ,Yt) in Definition 1.3 can be either a Markov process, or a non-

Markovian process. In case (Xt ,Yt) is a Markov process, its transition probability

kernel

q
�
(x,y),(x0,y0)

⌘
= P

⇣
Xt+1 = x0, Yt+1 = y0

��� Xt = x, Yt = y
⌘

should be such that the marginal distributions

Z

Ω
q
�
(x,y),(x0,dy0)

�
= p(x,x0) and

Z

Ω
q
�
(x,y),(dx0,y0)

�
= p(y,y0),

and

q
�
(x,x),(x0,y0)

⌘
=

(
p(x0,x) if x0 = y0,

0 if x0 6= y0.

Definition 1.3 Consider a coupling (Xt ,Yt) of two copies of a time homogeneous

Markov process (Markov chain) on a state space Ω with the transition probability

kernel {p(x,y)}x,y2Ω . The coupling time is the first meeting time of Xt and Yt , i.e.

τc := min{t � 0 : Xt = Yt}.
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The following theorem provides us with renown coupling inequality for Markov

processes. It follows immediately from Lemma 1.1 by observing that for every fixed

t � 0, the pair (Xt ,Yt) is the coupling of the random variables Xt and Yt .

Theorem 1.4 (The Coupling Inequality) Consider a coupling (Xt ,Yt) of two copies

of a time homogeneous Markov process on a state space Ω with the transition prob-

ability kernel {p(x,y)}x,y2Ω . Let νt and µt be the distributions of Xt and Yt respec-

tively. Then,

kνt �µtkTV  P(Xt 6= Yt) = P (τc > t).

The Coupling Inequality has an immediate implication on the mixing time tmix(ε) as

stated in the following corollary.

Corollary 1.5 Let (Xt ,Yt) be a coupling of a Markov process (Markov chain) where

Y0 is distributed by the stationary distribution π . Then, for all initial states X0 = x,

kPt(x, ·)�πkTV  P (τc > t)

and thus tmix(ε) E[τc]/ε .

The above Corollary 1.5 implies that the total variation distance to stationarity,

and thus the mixing time, of a Markov process can be bounded above by the proba-

bility P(Xt 6= Yt) for a coupling process (Xt ,Yt) starting with any initial conditions.

Consequently, obtaining a good bound on the mixing time requires finding a good

(or optimal) coupling.

From the Coupling Inequality, it is clear that in order to use the coupling method

to bound the mixing time of a Markov chain, one needs to bound the coupling time

for a coupling of the Markov process starting in all pairs of initial states. The ad-

vantage of the path coupling method described in Section 6 is that it only requires a

bound on couplings starting in neighboring pairs of initial states.

2 Example: random-to-random shuffling

The following motivational example illustrates the idea of path coupling. Here, we

consider the shuffling algorithm whereby on each iteration we select a card uni-

formly from the deck, remove it from the deck, and place it in one of the n positions

in the deck, selected uniformly and independently. Each iteration being done inde-

pendently of the others. This Markov chain on the Sn is referred to as the random-

to-random card shuffling algorithm. We need to shuffle the deck so that when we

are done with shuffling the deck, each of n! possible permutations is obtained with

probability close to 1
n!

. The mixing time of this card shuffling algorithm can be eas-

ily shown to be of order O(n logn) using the notion of the strong stationary time.

For this, one would consider the time it takes for each card in the deck to be se-

lected at least once. Then, using the coupon collector argument, one would prove
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the O(n logn) upper bound on the mixing time. The same coupon collector problem

is applied to show that we need at least O(n logn) iterations of the shuffling algo-

rithm to mix the deck. Our goal here is to arrive with the polynomial upper bound

using the coupling method1.

2.1 The coupling

Consider two decks of cards, each containing n cards labeled from 1 to n. The cou-

pling here is an algorithm of shuffling the two decks simultaneously, so that each

deck is shuffled according to the random-to-random Markov chain. Yet, the cou-

pling algorithm should guarantee sufficiently fast matching between the two decks.

Here, we will consider one such algorithm. We take two decks of n cards, A and B.

On each iteration, we implement the following procedure.

1. Randomly and uniformly sample i 2 {1, . . . ,n}.

2. Remove the card with label i from each of the two decks.

3. Randomly reinsert card i in deck A.

4. • If the new location of card i in the deck A is on the top of A, then in the deck

B, place card i on the top of the deck.

• If the new location of card i in the deck A is below card j, then insert card i

below card j in the deck B as well.

Let At 2 Sn and Bt 2 Sn denote the card orderings (permutations) in decks A and B

after t iterations.

2.2 Computing the coupling time with a laces approach

We introduce the following path metric d(·, ·) : Sn⇥Sn !Z+ by letting d(σ ,σ 0) be

the minimal number of nearest neighbor transpositions to traverse between the two

permutations, σ and σ 0. For example, for the two decks A and B in Figure 1 (left),

a distance minimizing path connecting the two permutations is given in Figure 1

(right).

Note that d(σ ,σ 0) 
�

n
2

�
. We consider the quantity dt = d(At ,Bt), the distance be-

tween our two decks at time t. We want to find the relationship between E[dt+1] and

E[dt ].

We consider a d(·, ·)-metric minimizing path. We call the path taken by a card label

a lace. Thus each lace representing a card label is involved in a certain number of

crossings. Let rt be the number of crossings per lace, averaged over all n card labels.

Then we have dt =
nrt
2

.

1 This coupling was constructed as part of the REU project of Jennifer Thompson that was super-

vised by Yevgeniy Kovchegov in the summer of 2010 at Oregon State University.
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Fig. 1 Left: A configuration of matchings between two decks of n = 4 cards. Right: Minimal

number of crossings between the two permutations is four.
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Fig. 2 Removing lace 3 decreases the number of crossings to two.

The evolution of the path connecting At to Bt can be described as follows. At each

time step we pick a lace (corresponding to a card label, say i) at random and remove

it. For example, take a minimal path connecting decks A and B in Figure 1, and

remove a lace corresponding to label 3, obtaining Figure 2. Then we reinsert the

removed lace back. There will be two cases:

1. With probability 1
n

we place the lace corresponding to card label i to the top of

the deck. See Figure 3. Then there will be no new crossings.

4

2

1

2

4

1

1

2

4

3 3 3

Fig. 3 Placing lace 3 on top does not add new crossings.
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2. We choose a lace j randomly and uniformly among the remaining n� 1 laces,

and place lace i directly below lace j. This has probability n�1
n

. Then the number

of additional new crossings is the same as the number of crossings of lace j, as

in Figure 4. Here

E[new crossings] =
⇣nrt

2
� rt

⌘ 2

n�1
.

4

2

1

2

4

1

1

2

4
3

3

3

3

2

4

1

4

2

3

1

2

4

3

1

2

4

1

3

1

4

2

3

Fig. 4 Left: Inserting lace 3 directly below lace 2 adds the same number of crossing as there were

of lace 2. Right: Counting the crossings.

Then,

E[dt+1|At ,Bt ] =
nrt

2
� rt +

✓
n�1

n

◆⇣nrt

2
� rt

⌘ 2

n�1
=

✓
1�

4

n2

◆
dt .

Hence,

E[dt+1] =

✓
1�

4

n2

◆
E[dt ],

and therefore, by Markov inequality,

P(At 6= Bt) = P(dt � 1) E[dt ] =

✓
1�

4

n2

◆t

E[d0]

✓
1�

4

n2

◆t✓
n

2

◆
 ε

whenever

t �
�2logn+ log2+ logε

log
⇣

1� 4
n2

⌘ =
1

2
n2 logn+O(n2).

Thus, by Corollary 1.5, we conclude that the mixing time

tmix(ε)
1

2
n2 logn+O(n2).

Here, we established a polynomial upper bound on mixing time via coupling. As we

know, the above upper bound is not tight. Yet, this example demonstrates the idea of

path metric, the distance minimizing path of neighbor states, and of synchronized
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coupling of multiple copies of the Markov process. All of these notions will be

introduced in the following sections of this chapter.

3 Maximal coupling of a pair of random variables

We begin by defining the maximal coupling of a pair of random variables in full

generality. Suppose X and Y are a pair of random variables distributed according to

respective probability measures ν and µ on a measurable space (Ω ,Σ). A coupling

is a joint distribution of X and Y such that the marginal distributions are µ and ν . A

maximal coupling is a coupling that maximizes the probability of the event X = Y .

Naturally, that probability has to be 1�kν �µkTV.

Here we will follow the approach from Frank den Hollander’s lecture notes [15].

Let

gν =
dν

d(ν +µ)
and gµ =

dµ

d(ν +µ)

be the Radon-Nikodym derivatives. We define new measures as follows2

γ(A) =
Z

A

�
gν ^gµ

�
d(ν +µ),

ν0(A) =
Z

A

�
gν �gµ

�
+

d(ν +µ) =
Z

A

�
gν � (gν ^gµ)

�
d(ν +µ),

and

µ0(A) =
Z

A

�
gµ �gν

�
+

d(ν +µ) =
Z

A

�
gµ � (gν ^gµ)

�
d(ν +µ).

Consequently we have

ν = ν0 + γ and µ = µ0 + γ, (2)

where ν0 and µ0 are mutually singular, and by Definition 0.2,

γ(Ω) = 1�kν �µkTV.

We will use the decomposition (2) in the maximal coupling construction below.

Now, assuming kν �µkTV > 0, we proceed with the maximal coupling construction

of X and Y . We sample four independent random variables,

B, Vν , Vµ , and Vγ ,

2 Here, symbols ^ and _ denote minimum and maximum respectively, and (x)+ = 1
2

�
|x|+ x

�
.
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where B is Bernoulli with probability parameter γ(Ω) = 1�kν �µkTV, and Vν , Vµ ,

Vγ are sampled from 1
1�γ(Ω)ν0, 1

1�γ(Ω)µ0, 1
γ(Ω)γ respectively. Next, we let

X = BVγ +(1�B)Vν and Y = BVγ +(1�B)Vµ . (3)

We observe that the above construction (3) insures that the distributions of X and Y

are ν0 + γ = ν and µ0 + γ = µ . Also,

P(X = Y =Vγ) = P(B = 1) = γ(Ω) = 1�kν �µkTV.

Example 1. Suppose Ω = {0,1,2,3,4,5,6}. Let δa denote a unit point mass con-

centrated at a. Let X and Y be distributed according to the corresponding discrete

probability measures

µ =
1

15
δ0 +

2

15
δ1 +

3

15
δ2 +

4

15
δ3 +

5

15
δ4

and

ν =
1

6
δ1 +

1

6
δ2 +

1

6
δ3 +

1

6
δ4 +

1

6
δ5 +

1

6
δ6.

The decomposition (2) is given by the following discrete measures

ν0 =
1

30
δ1 +

1

6
δ5 +

1

6
δ6, µ0 =

1

15
δ0 +

1

30
δ2 +

1

10
δ3 +

1

6
δ4,

and

γ =
2

15
δ1 +

1

6
δ2 +

1

6
δ3 +

1

6
δ4.

One can verify that

γ(Ω) =
19

30
= 1�kν �µkTV.

The following lemma is readily obtained from Lemma 1.1 and the above maximal

coupling construction for a pair of random variables.

Lemma 3.1 Let µ and ν be two probability distributions on Ω . Then

kµ �νkTV = inf
�

P{X 6= Y} : (X ,Y ) is a coupling of µ and ν
 
.

4 Synchronized maximal coupling of three random variables

Similarly to the maximal coupling of a pair of random variables introduced in Sec-

tion 3, in some instances we may be able to construct a synchronized maximal cou-
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pling of three random variables. Suppose X , Y , and Z are random variables dis-

tributed according to respective probability measures, ν , µ , and λ , on a measurable

space (Ω ,Σ). We consider whether we can construct a random vector (X ,Y,Z) on

Ω ⇥Ω ⇥Ω so that each pair of random variables is a maximal coupling, as defined

earlier. Let

gν =
dν

d(ν +µ +λ )
, gµ =

dµ

d(ν +µ +λ )
, and gλ =

dλ

d(ν +µ +λ )

be the Radon-Nikodym derivatives. We define new measures,

γ(A)=
Z

A

�
gν ^gµ ^gλ

�
d(ν+µ+λ ), ν0(A)=

Z

A

�
gν �(gµ _gλ )

�
+

d(ν+µ+λ ),

µ0(A) =
Z

A

�
gµ � (gν _gλ )

�
+

d(ν +µ +λ ),

and λ0(A) =
Z

A

�
gλ � (gν _gµ)

�
+

d(ν +µ +λ ).

Let also

γνµ(A) =
Z

A

�
(gν ^gµ)�gλ

�
+

d(ν +µ +λ ) =
Z

A

�
gν ^gµ

�
d(ν +µ +λ ) � γ(A),

(4)

γνλ (A) =
Z

A

�
(gν ^gλ )�gµ

�
+

d(ν +µ +λ ) =
Z

A

�
gν ^gλ

�
d(ν +µ +λ ) � γ(A),

(5)

and

γµλ (A) =
Z

A

�
(gµ ^gλ )�gν

�
+

d(ν +µ +λ ) =
Z

A

�
gµ ^gλ

�
d(ν +µ +λ ) � γ(A).

(6)

Then, similarly to (2), each probability measure decomposes into a sum of measures

ν =ν0 + γνµ + γνλ + γ,

µ =µ0 + γνµ + γµλ + γ,

and (7)

λ =λ0 + γνλ + γµλ + γ,

where by Definition 0.2 and equations (4), (5), and (6),
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γνµ(Ω)+ γ(Ω) = 1�kν �µkTV,

γνλ (Ω)+ γ(Ω) = 1�kν �λkTV,

and (8)

γµλ (Ω)+ γ(Ω) = 1�kµ �λkTV.

Hence, the following three quantities are equal,

ν0(Ω)� γµλ (Ω) = µ0(Ω)� γνλ (Ω) = λ0(Ω)� γνµ(Ω). (9)

Let ∆ = ν0(Ω)� γµλ (Ω) in (9).

Lemma 4.1 One can construct a random variable (X ,Y,Z) on Ω ⇥Ω ⇥Ω such

that each pair of marginal random variables is maximally coupled if and only if

kν �µkTV +kν �λkTV +kµ �λkTV � 2�2γ(Ω). (10)

We will call such construction the synchronized maximal coupling of three random

variables.

Observe that by (7) and (8), condition (10) is equivalent to ∆ � 0.

Proof. Suppose condition (10) is satisfied, and therefore ∆ � 0. Then we can con-

sider the following Bernoulli vector

�
Bγ ,Bνµ ,Bνλ ,Bµλ ,B0

�
=

8
>>>>>><
>>>>>>:

(1,0,0,0,0) with probability γ(Ω),

(0,1,0,0,0) with probability γνµ(Ω),

(0,0,1,0,0) with probability γνλ (Ω),

(0,0,0,1,0) with probability γµλ (Ω),

(0,0,0,0,1) with probability ∆ .

Next, let random variables

Vν , Vµ , Vλ , Vγ , Vνµ , Vνλ , Vµλ

be individually sampled from

1

ν0(Ω)
ν0,

1

µ0(Ω)
µ0,

1

λ0(Ω)
λ0,

1

γ(Ω)
γ,

1

γνµ(Ω)
γνµ ,

1

γνλ (Ω)
γνλ ,

1

γµλ (Ω)
γµλ

respectively. Then, we construct a synchronized maximal coupling of X , Y , and Z

by letting

X = BγVγ +BνµVνµ +BνλVνλ +(Bµλ +B0)Vν ,

Y = BγVγ +BνµVνµ +BµλVµλ +(Bνλ +B0)Vµ ,

and

Z = BγVγ +BνλVνλ +BµλVµλ +(Bνµ +B0)Vλ .
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Next, we prove the converse by contradiction. Suppose that condition (10) is not

satisfied, and therefore, ∆ < 0. Suppose there is a synchronized maximal coupling

of X , Y , and Z. Let

Ων = {x 2 Ω : gν(x) gµ(x), gν(x) gλ (x)},

Ωµ = {x 2 Ω : gµ(x)< gν(x), gµ(x) gλ (x)},

and

Ων = {x 2 Ω : gλ (x)< gν(x), gλ (x)< gµ(x)}.

Then, Ω = Ων [Ωµ [Ωλ and

P(X = Y = Z) = P(X = Y = Z 2 Ων)+P(X = Y = Z 2 Ωµ)+P(X = Y = Z 2 Ωλ )

 P(X 2 Ων)+P(Y 2 Ωµ)+P(Z 2 Ωλ )

=
Z

Ων

gν d(ν +µ +λ )+
Z

Ωµ

gµ d(ν +µ +λ )+
Z

Ωλ

gλ d(ν +µ +λ )

=
Z

A

�
gν ^gµ ^gλ

�
d(ν +µ +λ ) = γ(Ω). (11)

Also, since each pair of variables needs to be a maximal coupling, by (8),

P(X = Y ) = γ(Ω)+ γνµ(Ω),

P(X = Z) = γ(Ω)+ γνλ (Ω), and

P(Y = Z) = γ(Ω)+ γνλ (Ω). (12)

Therefore, combining the above equations (11) and (12), we arrive with the follow-

ing contradiction:

P(X = Y = Z)+P(X = Y 6= Z)+P(X = Z 6= Y )+P(Y = Z 6= X)

= P(X = Y )+P(X = Z)+P(Y = Z)�2P(X = Y = Z)

� γ(Ω)+ γνµ(Ω)+ γνλ (Ω)+ γµλ (Ω) = 1�∆ > 1.

Definition 4.2 We say that the probability measures ν , µ , and λ on a measurable

space (Ω ,Σ) are monotone ordered if the following is valid up to a permutation of

ν , µ , and λ : for (ν +µ +λ )-a.e. x in Ω , either

gν(x)� gµ(x)� gλ (x) or gν(x) gµ(x) gλ (x). (13)

Note that if Ω is a discrete sample space, ν , µ , and λ are monotone ordered if (up

to a permutation of ν , µ , and λ ) for any x 2 Ω ,

ν(x)� µ(x)� λ (x) or ν(x) µ(x) λ (x). (14)
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We have the following corollary to Lemma 4.1.

Corollary 4.3 If the probability measure ν , µ , and λ are monotone ordered, then

there is a synchronized maximal coupling of X, Y , and Z.

Proof. Observe that monotonicity assumption (13) implies

kν �λkTV = 1�
Z

Ω

�
gν ^gλ

�
d(ν +µ +λ ) = 1� γ(Ω)

and

kν �µkTV +kµ �λkTV =
Z

Ω

��gν �gµ

��d(ν +µ +λ )+
Z

Ω

��gµ �gλ

��d(ν +µ +λ )

= kν �λkTV = 1� γ(Ω).

Thus

kν �µkTV +kν �λkTV +kµ �λkTV = 2�2γ(Ω).

Hence, condition (10) in Lemma 4.1 is satisfied.

5 Greedy coupling

Given a finite graph G = (V,E), and a space Λ . Let Ω = Λ |V | be the state space

consisting of configurations x=
�
xv

�
v2V

of values (spins) xv from Λ assigned to each

vertex v in V . Consider a Markov process whose transition kernel {p(x,y)}x,y2Ω can

be represented as a randomization over the values taken in V of a discrete choice

variable Θ as follows. For a given configuration x =
�
xv

�
v2V

2 Ω , let the transition

probability be defined as

p(x,x0) = qv,x(ξ )P(Θ = v) (15)

for all neighboring configurations

x0 =

(
xu u 6= v

ξ u = v
with ξ 2 Λ \{xv},

where qv,x(ξ ) is a probability distribution on Λ that depends entirely on v and�
xu

 
u2V\{v}

. The remaining probability is accumulated in

p(x,x) = ∑
v2V

qv,x(xv)P(Θ = v). (16)
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Here, the Markov processes whose transition kernel can be represented as in (15)

and (16) will be called spin dynamics. The choice variable Θ , independently sam-

pled for every time step, represents the selection of a vertex on a graph for the update

of the spin value.

Suppose we are constructing a coupling of two copies, Xt and Yt , of the Markov

process evolving according to the transition kernel represented as in (15) and (16)

so that on every time step, we sample a common choice variable Θ for both Markov

chains. Next, conditioning on Θ = v, Xt = x, and Yt = y, we sample the values of Xt+1

and Yt+1 according to the maximal coupling procedure (3) of respective distributions

qv,x(ξ ) and qv,y(ξ ) of Xt+1(v) and Yt+1(v) as detailed in Section 3 of this chapter.

Such coupling of two copies of a Markov process is referred to as greedy coupling.

A greedy coupling is an efficient and easy-to-implement coupling construction

that often yields an optimal order of upper bound on the mixing time. See [1, 29].

Essentially, conditioned on the same value of the choice variable Θ , the greedy

coupling would maximize the probability of updating to the same spin value on

each time step. Yet, it may not achieve the most rapid coupling time, while the more

efficient non-Markovian coupling constructions, often yielding the desired optimal

order bound, had been proposed in the past.

6 Path coupling

The idea of the path coupling method is to view a coupling that starts in configu-

rations σ and τ as a sequence of couplings that start in neighboring configurations

(xi,xi+1) such that (σ = x0,x1,x2, . . . ,xr = τ). Then the contraction of the origi-

nal coupling distance can be obtained by proving contraction between neighboring

configurations, which is often easier to show.

Let Ω be a finite sample space, and suppose (Xt ,Yt) is a coupling of a Markov

chain on Ω . Suppose also there is a neighborhood structure on Ω , and suppose it

is transitive in the following sense: for any x and y, there is a neighbor-to-neighbor

path

x ⇠ x1 ⇠ x2 ⇠ . . .⇠ xr�1 ⇠ y,

where u ⇠ v denotes that sites u and v are neighbors.

Let d(x,y) be a metric over Ω such that d(x,y)� 1 for any x 6= y, and

d(x,y) = min
π:x!y

r

∑
i=1

d(xi�1,xi),

where the minimum is taken over all neighbor-to-neighbor paths

π : x0 = x ⇠ x1 ⇠ x2 ⇠ . . .⇠ xr�1 ⇠ xr = y
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of any number of steps r. Such a metric is called path metric. Next, we define the

diameter of the sample space:

diam(Ω) = max
x,y2Ω

d(x,y).

Consider a coupling (Xt ,Yt) of two copies of a time homogeneous Markov process

on a state space Ω with the transition probability kernel {p(x,y)}x,y2Ω . We define

the mean coupling distance as follows:

dK(x,y) := E[d(Xt+1,Yt+1) |Xt = x,Yt = y].

We will need the following two conditions.

Condition 1 (Triangle inequality) Given a path metric d(x,y) over Ω . Then the

Markov process {p(x,y)}x,y2Ω is such that for any x,y,z 2 Ω satisfying

d(x,z) = d(x,y)+d(y,z),

we have

dK(x,z) dK(x,y)+dK(y,z).

Condition 2 (Monotonicity) Given a finite graph G = (V,E), a space Λ , and a

path metric d(x,y) over Ω = Λ |V |. Suppose process {p(x,y)}x,y2Ω is a spin dynam-

ics, i.e. its transition kernel can be represented as in (15) and (16). Then for any

x,y,z 2 Ω satisfying

d(x,z) = d(x,y)+d(y,z),

and any vertex v 2 V , the probability measures qv,x, qv,y, and qv,z are monotone

ordered, as in Definition 4.2.

Importantly, the monotonicity property of Condition 2 will be established for some

of the Glauber dynamics of the statistical mechanical (spin) models considered in

this monograph.

Lemma 6.1 Suppose (Xt ,Yt) is a greedy coupling as constructed in Section 5 for

the Markov process satisfying Condition 2. Then Condition 1 is also satisfied.

Proof. Given x,y,z 2 Ω satisfying d(x,z) = d(x,y)+d(y,z). Consider three copies

Xt , Yt , and Zt of the Markov process. We condition on (Xt ,Yt ,Zt) = (x,y,z) and

the same value Θ = v, sampled for all three processes. Then, by Corollary 4.3 to

Lemma 4.1, there exists a synchronized maximal coupling of the spins at v for the

three copies of the Markov process. We use the synchronized maximal coupling of

distributions qv,x, qv,y, and qv,z to sample Xt+1, Yt+1, and Zt+1. This way, Xt+1, Yt+1,

and Zt+1 are defined in the same probability space, and by the triangle inequality,

E[d(Xt+1,Zt+1) |Xt = x,Yt = y,Zt = z,Θ = v]

 E[d(Xt+1,Yt+1)+d(Yt+1,Zt+1) |Xt = x,Yt = y,Zt = z,Θ = v].
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Hence,

dK(x,z) = ∑
v2V

E[d(Xt+1,Zt+1) |Xt = x,Zt = z,Θ = v]P(Θ = v) dK(x,y)+dK(y,z).

Path coupling, invented by Bubley and Dyer in 1997, is a method that employs

an existing coupling construction in order to bound the mixing time from above.

This method in its standard form usually requires certain metric contraction between

neighbor sites. Specifically, we require that for any x ⇠ y,

dK(x,y) 
�
1�δ (Ω)

�
d(x,y), (17)

where 0 < δ (Ω)< 1 does not depend on x and y.

The above contraction inequality (17) has the following implication.

Theorem 6.2 Suppose there is a coupling (Xt ,Yt) such that Condition 1 and the

contraction inequality (17) are satisfied. Then

tmix(ε)

⇠
logdiam(Ω)� logε

δ (Ω)

⇡
.

Proof. For any x and y in Ω , consider a path metric minimizing path

π : x0 = x ⇠ x1 ⇠ x2 ⇠ . . .⇠ xr�1 ⇠ xr = y

such that

d(x,y) =
r

∑
i=1

d(xi�1,xi).

Then, by Condition 1,

E[d(Xt+1,Yt+1) |Xt = x,Yt = y] = dK(x,y)
r

∑
i=1

dK(xi�1,xi)

 (1�δ (Ω)
� r

∑
i=1

d(xi�1,xi) = (1�δ (Ω)
�
d(x,y).

Hence, after t iterations,

E[d(Xt ,Yt)] (1�δ (Ω)
�t

d(X0,Y0)
�
1�δ (Ω)

�t
diam(Ω)

for any initial (X0,Y0), and

P(Xt 6= Yt) = P
�
d(Xt ,Yt)� 1

�
 E[d(Xt ,Yt)]

�
1�δ (Ω)

�t
diam(Ω) ε

whenever

t �
logdiam(Ω)� logε

� log
�
1�δ (Ω)

� .
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Thus, by the Coupling Inequality (Corollary 1.5),

tmix(ε)

&
logdiam(Ω)� logε

� log
�
1�δ (Ω)

�
'


⇠
logdiam(Ω)� logε

δ (Ω)

⇡
.

The following corollary of Theorem 6.2 is due to Lemma 6.1.

Corollary 6.3 Suppose (Xt ,Yt) is a greedy coupling as constructed in Section 5 for

the Markov process such that Condition 2 and the contraction inequality (17) are

satisfied. Then

tmix(ε)

⇠
logdiam(Ω)� logε

δ (Ω)

⇡
.

The emergence of the path coupling technique [6] has allowed for a greater sim-

plification in the use of the coupling argument, as rigorous analysis of coupling can

be significantly easier when one considers only neighboring configurations. How-

ever, the simplification of the path coupling technique comes at the cost of the strong

assumption that the coupling distance for all pairs of neighboring configurations

must be contracting. Observe that although the contraction between all neighbors

is a sufficient condition for the above mixing time bound, it is far from being a

necessary condition. In fact, this condition is an artifact of the method.

There had been some successful generalizations of the path coupling method.

Specifically in [19], [30] and [5]. In [19], the path coupling method is generalized

to account for contraction after a specific number of time-steps, defined as a random

variable. In [30] a multi-step non-Markovian coupling construction is considered

that evolves via partial couplings of variable lengths determined by stopping times.

In order to bound the coupling time, the authors of [30] introduce a technique they

call variable length path coupling that further generalizes the approach in [19].

7 Example: Ising model on a d-dimensional torus

Consider an Ising model on a d-dimensional torus Z
d/nZd . Let V denote the set

of all nd vertices of Zd/nZd , and E be the set of all edges. Let Ω = {�1,1}nd
be

the space of all spin configurations, and for any pair of configurations σ =
�
σu

�
u2V

and τ =
�
τu

�
u2V

in Ω , let the path metric d(σ ,τ) be the number of discrepancies

between them,3

d(σ ,τ) = ∑
u2Zd/nZd

1{σu 6=τu}.

3 Here, 1{σu 6=τu} =

(
1 if σu 6= τu,

0 if σu = τu.
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The Gibbs potential is given by the following Hamiltonian energy function:

H (σ) =�
1

2
∑

u,v: u⇠v

σ(u)σ(v) = � ∑
e=[u,v]2E

σ(u)σ(v)

and probability of a configuration σ 2 Ω is

π(σ) =
e�βH (σ)

Z(β )
,

where the parameter β > 0 is also known as “inverse temperature”, and Z(β ) =

∑σ2Λ e�βH (σ) is the normalizing factor.

For each v 2V , we define the local Hamiltonian

Hlocal(σ ,v) =� ∑
u: u⇠v

σ(u)σ(v),

where we write u ⇠ v if and only if u and v are neighbor vertices connected by an

edge. Then, the Hamiltonian H (σ) can be expressed via the local Hamiltonians

H (σ) =
1

2
∑
v2V

Hlocal(σ ,v) .

Glauber dynamics: The Glauber dynamics Xt for the Ising model on a d-dimensional

torus evolves as follows. Suppose Xt = σ . In order to sample Xt+1, we select a vertex

with a choice variable Θ . Conditioned on Θ = v, we update the spin at v according

to the distribution π , required to agree with the spins at all vertices of the graph not

equal to v. The probability for the spin at v to be updated to 1 is equal to

qv,σ (1) =
e�βH (σ+)

e�βH (σ�)+ e�βH (σ+)
=

e�βHlocal(σ+,v)

e�βHlocal(σ�,v)+ e�βHlocal(σ+,v)
, (18)

where σ+ =

(
σu if u 6= v

1 if u = v
is the configuration we obtain from σ if we assign spin

1 to vertex v. Similarly, the probability for the spin at v updating to �1 is

qv,σ (�1) =
e�βH (σ�)

e�βH (σ�)+ e�βH (σ+)
=

e�βHlocal(σ�,v)

e�βHlocal(σ�,v)+ e�βHlocal(σ+,v)
, (19)

where σ� =

(
σu if u 6= v

�1 if u = v
is the configuration we obtain from σ if we assign spin

�1 to vertex v.

Note that Glauber dynamics Xt is a reversible Markov chain on the state space of all

configurations Ω such that the probability measure π is its stationary distribution.
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Observe that since Hlocal(σ�) = �Hlocal(σ+), equations (18) and (19) can be

rewritten as

qv,σ (1) =
e�βHlocal(σ+,v)

eβHlocal(σ+,v)+ e�βHlocal(σ+,v)
(20)

and

qv,σ (�1) =
eβHlocal(σ+,v)

eβHlocal(σ+,v)+ e�βHlocal(σ+,v)
. (21)

Observe that qv,σ (1) is monotone increasing and qv,σ (�1) is monotone decreasing

functions of
��{u : u ⇠ v, σ(u) = 1}

��, the number of neighbors of v with spin 1

in configuration σ . Thus Condition 2 required for Corollary 6.3 of Theorem 6.2 is

satisfied.

Greedy coupling: Following the greedy coupling construction in Section 5, condi-

tioned on Xt = σ and Yt = τ , we sample Xt+1 and Yt+1 as follows. First, we select a

vertex Θ jointly for both copies of the Markov chain. Next, conditioned on Θ = v,

we simultaneously update the spin at vertex v for both, Xt+1 and Yt+1, using the

maximal coupling of probability measures

ν = qv,σ (1)δ1 +qv,σ (�1)δ�1

and

µ = qv,τ(1)δ1 +qv,τ(�1)δ�1.

We let

dK(σ ,τ) := E[d(Xt+1,Yt+1) |Xt = σ ,Yt = τ]

denote the mean coupling distance. Here, dK(·, ·) is a pseudometric on Ω by Lemma

6.1.

Here, by the definition of maximal coupling in Section 3, conditioned on Θ = v, the

probability that the spins at the vertex v update differently is equal

kν �µkTV =
1

2

���
�
qv,σ (�1)�qv,τ(�1)

�
+
�
qv,τ(1)�qv,σ (1)

����.

Next, by (20) and (21),

kν �µkTV =
1

2

���tanh
⇣

βHlocal(σ+,v)
⌘
� tanh

⇣
βHlocal(τ+,v)

⌘��� . (22)

Path coupling: Consider a pair of neighboring configurations σ and τ in Ω . That

is σ and τ agree everywhere except at a single discrepancy vertex at w, where

(
σu = τu if u 6= w,

σu 6= τu if u = w.

Set Xt = σ and Yt = τ . Then, Xt+1 = Yt+1 if and only if Θ = w, i.e.
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P(d(Xt+1,Yt+1) = 0 |Xt = σ ,Yt = τ) = P(Θ = w) =
1

nd

If Θ 6= w and if Θ is not a neighbor vertex to w, then the number of discrepancies is

not going to change

P(d(Xt+1,Yt+1) = 1 |Xt = σ ,Yt = τ,Θ 6= w,Θ 6⇠ w) = 1.

Finally, if Θ is a neighbor vertex to w, the number of discrepancies d(Xt+1,Yt+1)
may equal 1 or 2 with respective probabilities provided using formula (22). There-

fore,

dK(σ ,τ)=P(Θ 6= w,Θ 6⇠ w)+∑
v:v⇠w

E[d(Xt+1,Yt+1) |Xt = σ ,Yt = τ,Θ = v]P(Θ = v)

=1�
1

nd
+

1

nd
· ∑
v:v⇠w

1

2

���tanh
⇣

βHlocal(σ+,v)
⌘
� tanh

⇣
βHlocal(τ+,v)

⌘��� ,

where if v ⇠ w, |Hlocal(σ+,v)�Hlocal(τ+,v)| = 2 as w is the only discrepancy

between σ and τ . Thus, since for all real x and β > 0,

| tanh
�
β (x+2)

�
� tanh

�
βx
�
| | tanh(β )� tanh(�β )|= 2tanh(β ),

we have

dK(σ ,τ) 1�
1�2d tanh(β )

nd
.

Hence, if β < 1
2d

, the contraction condition (17) is satisfied with δ (Ω)= 1�2d tanh(β )

nd ,

and by Corollary 6.3 of Theorem 6.2,

tmix(ε)

⇠
logdiam(Ω)� logε

δ (Ω)

⇡
=

⇠
nd d logn� logε

1�2d tanh(β )

⇡
=Cnd logn+O(nd),

where C = d
1�2d tanh(β ) .

We saw that, if tanh(β ) < 1
2d

, the mixing time is polynomial tmix(ε) = O(nd logn).
Thus, in that parameter region, the Glauber dynamics is a polynomially fast way to

sample from a probability distribution approximating distribution π .

8 Bounding total variation distance with aggregate contraction

and concentration inequalities

The following result is an extension of the coupling inequality that will be funda-

mental for the method of aggregate path coupling presented in Chapters 6, 7, and

8.
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For a given integer system size parameter n > 0, consider an irreducible and

aperiodic Markov chain with a unique stationary distribution πn over the state space

Ωn with σ -algebra Σn.

Theorem 8.1 Suppose that for all ε > 0 small enough, and n large enough, there

exists a set Aε,n 2 Σn such that following inequalities are satisfied:

(a) Aggregate Contraction: There is a constant α > 0 such that for all sufficiently

large values of n, there exists a coupling process (Xt ,Yt) on Ωn ⇥Ωn and a path

metric d(·, ·) on Ωn for which the mean coupling distance satisfies

dK(x,y) e�α/nd(x,y) 8x 2 Ωn and 8y 2 Aε,n. (23)

(b) Concentration Inequality: For all ε > 0 small enough and all n large enough,

there is a function ζ (n) > 0 such that the stationary probability of the comple-

ment Ac
ε,n of Aε,n is bounded

πn

�
Ac

ε,n

�


1

ζ (n)
, (24)

where
ζ (n)

diam(Ωn)
! ∞ as n ! ∞.

Then, for such Markov chain Xt on Ωn, the total variation distance after t time steps

will be bounded above by

kPt(X0, ·)�πnkTV  diam(Ωn)
⇣

e�αt/n + t/ζ (n)
⌘

for all sufficiently large n.

Proof. Let (Xt ,Yt) be a coupling as in condition (a) of the theorem, and let Y0
dist
= πn,

the stationary distribution.4 Then, by Corollary 1.5, for sufficiently large n,

kPt(X0, ·)�πnkTV  P(Xt 6= Yt) = P(d(Xt ,Yt)� 1)

 E[d(Xt ,Yt)] = E[E[d(Xt ,Yt ) |Xt�1,Yt�1]]

 E[E[d(Xt ,Yt ) |Xt�1,Yt�1] | Yt�1 2 Aε,n] ·P(Yt�1 2 Aε,n)

+diam(Ωn) ·P(Yt�1 2 Ac
ε,n)

= E[dK(Xt�1,Yt�1) | Yt�1 2 Aε,n] ·P(Yt�1 2 Aε,n)

+diam(Ωn) ·P(Yt�1 2 Ac
ε,n).

By iteratively applying the inequality (23), it follows that

4 Symbol
dist
= means “distributed according to”.
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kPt(X0, ·)�Pn,β ,KkTV  e�α/n
E[d(Xt�1,Yt�1) | Yt�1 2 Aε,n] ·P(Yt�1 2 Aε,n)

+diam(Ωn) ·P(Yt�1 2 Ac
ε,n)

 e�α/n
E[d(Xt�1,Yt�1)] +diam(Ωn) ·P(Yt�1 2 Ac

ε,n)

...
...

 e�αt/n
E[d(X0,Y0)]+diam(Ωn) ·

t�1

∑
s=0

P(Ys 2 Ac
ε,n)

= e�αt/n
E[d(X0,Y0)]+diam(Ωn) · tπn

�
Ac

ε,n

�

 diam(Ωn)
⇣

e�αt/n + t/ζ (n)
⌘

by inequality (24).

The concentration inequality (24) that we employ in this monograph in order to

apply Theorem 8.1 is the upper bound (53) in the large deviation principle, which

is essentially the exponential Markov inequality also known as Chernoff bound.

However, in order to use aggregate path coupling, one may utilize a much weaker

concentration inequality. For example, the function ζ (n) in (24) could be just a

polynomial of a sufficiently large degree.



Chapter 3

Statistical mechanical models and Glauber
dynamics

In recent years, mixing times of dynamics of statistical mechanical models have

been the focus of much probability research, drawing interest from researchers in

mathematics, physics and computer science. The topic is both physically relevant

and mathematically rich. But up to now, most of the attention has focused on partic-

ular models including rigorous results for several mean-field models. A few exam-

ples are (a) the Curie-Weiss (mean-field Ising) model [16, 17, 36], (b) the mean-field

Blume-Capel model [23, 34], (c) the Curie-Weiss-Potts (mean-field Potts) model

[2, 13]. A good survey of the topic of mixing times of statistical mechanical models

can be found in the recent paper by Cuff et. al. [13].

The aggregate path coupling method was developed in [34, 35, 31] to obtain

rapid mixing results for statistical mechanical models, in particular, those models

that undergo a first-order phase transition defined in Section 11. For this class of

models, the standard path coupling method fails to be applicable. The remainder

of this book is devoted to the exposition of the path coupling and aggregate path

coupling methods applied to Glauber dynamics of statistical mechanical models.

As stated in [21], “In statistical mechanics, one derives macroscopic properties

of a substance from a probability distribution that describes the complicated inter-

actions among the individual constituent particles.” The distribution referred to in

this quote is called the Gibbs ensemble or Gibbs measure which is defined next.

A configuration of the model has the form ω = (ω1,ω2, . . . ,ωn) 2 Λ n, where

Λ is some finite, discrete set. We will consider a configuration on a graph with n

vertices and let Xi(ω) = ωi denote the spin at vertex i. The random variables Xi’s for

i = 1,2, . . . ,n are independent and identically distributed with common distribution

ρ .

Statistical mechanical models are defined by the interactions among the spins

that are expressed through the Hamiltonian (energy) function Hn and we denote by

Mn(ω) the relevant macroscopic quantity corresponding to the configuration ω . The

lift from the microscopic level of the configurations ω to the macroscopic level of

Mn is through the interaction representation function H that satisfies

Hn(ω) = nH(Mn(ω)). (25)

27
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We now defined the Gibbs ensemble of statistical mechanics for arbitrary Hamil-

tonian functions which is what we refer to as “statistical mechanical models”.

Definition 8.2 The Gibbs ensemble or Gibbs measure in statistical mechanics is

defined as the sequence of probability measures

Pn,β (B) =
1

Zn(β )

Z

B
exp{�βHn(ω)}dPn =

1

Zn(β )

Z

B
exp{�βnH (Mn(ω))}dPn

(26)

where Pn is the product measure with identical marginals ρ , and

Zn(β ) =
Z

Λ n
exp{�βHn(ω)}dPn

is the partition function. The positive parameter β represents the inverse tempera-

ture of the external heat bath.

Next, we define the Glauber dynamics corresponding to the Gibbs ensemble Pn,β .

These dynamics yields a reversible Markov process Xt with stationary distribution

Pn,β . For more on Glauber dynamics, see [7].

Definition 8.3 On the configuration space Λ n, we define the Glauber dynamics

for the class of spin models considered in this paper. Suppose Xt = ω 2 Λ n, then

Xt+1 is sampled as follows.

(i) Select a vertex from the underlying graph uniformly with a choice variable Θ .

(ii) Conditioned on Θ = v, update the spin at vertex v according to the distribution

Pn,β , conditioned on the event that the spins at all vertices not equal to v remain

unchanged. For ξ 2 Λ , the probability of updating the spin at vertex v to ξ is

denoted by qv,ω(ξ ).

Such Markov processes are a case of what we referred to as spin dynamics in Section

5 of Chapter 2, i.e. its transition kernel can be represented as in (15) and (16).

In the following two sections, we define four (classes of) statistical models used

to illustrate the theory of aggregate path coupling. The models are divided up by the

dimensionality of the macroscopic quantity Mn in order to develop and motivate the

aggregate path coupling method.

9 One dimensional models

We begin with two models for which the relevant macroscopic quantity is the (one-

dimensional) magnetization denoted by Sn(ω)/n where Sn(ω) = ∑
n
i=1 ωi is the total

spin of the configuration ω .
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9.1 Curie-Weiss (mean-field Ising) model

One of the simplest (and most studied) models in statistical mechanics is the Curie-

Weiss model, whose individual spins take values in Λ = {�1,1} and each spin

interacts with every other spin. It is the mean-field approximation to the famous

Ising model.

The Hamiltonian function on the configuration space Λ n = {�1,1}n for the

Curie-Weiss model is defined by

H
CW

n (ω) =�
1

2n

n

∑
i, j=1

ωiω j =�
n

2

✓
Sn(ω)

n

◆2

.

For inverse temperature β , the Curie-Weiss model is defined by the the following

Gibbs ensemble

PCW
n,β (ω) =

1

Zn(β )
exp

"
nβ

2

✓
Sn(ω)

n

◆2
#
=

1

Zn(β )
exp
⇥
�βH

CW
n (ω)

⇤

with partition function Zn(β ) = ∑ω2Λ n exp[�βH CW
n (ω)]. The interaction repre-

sentation function of the Curie-Weiss model is

HCW (z) =�
z2

2

For a much more complete discussion of the Curie-Weiss model, see [21].

The Glauber dynamics for the Curie-Weiss model evolves by sampling a vertex

with a choice variable Θ . Next, conditioned on Θ = i, updating the spin at i accord-

ing to the distribution PCW
n,β , conditioned to agree with the spins at all vertices not

equal to i. Given the current configuration ω , and conditioned on Θ = i, then the

probability for the spin at i to be updated to +1 is equal to

qi,ω(1) =
eβ S̃(ω,i)/n

eβ S̃(ω,i)/n + e�β S̃(ω,i)/n
=

1+ tanh(β S̃(ω, i)/n)

2
(27)

where S̃(ω, i) = ∑
j: j 6=i

ω j is the total spin of the neighboring vertices of i. Similarly,

the probability of i updating to �1 is

qi,ω(�1) =
e�β S̃(ω,i)/n

eβ S̃(ω,i)/n + e�β S̃(ω,i)/n
=

1� tanh(β S̃(ω, i)/n)

2
. (28)

Note that here, qi,ω(1) is increasing with respect to S̃(ω, i) and qi,ω(1) is decreasing

with respect to S̃(ω, i). Thus Condition 2 required for Corollary 6.3 of Theorem 6.2

is satisfied.
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9.2 Mean-field Blume-Capel model

The next model presented is the mean-field Blume-Capel (BC) model. While the

most descriptive macroscopic quantity for the BC model is the empirical measure

or magnetization vector, since the spins take values in Λ = {�1,0,1}, as shown in

[26], the analysis of the model is simplified by re-characterizing it as a Curie-Weiss

type model as described below.

The Hamiltonian function on the configuration space Λ n = {�1,0,1}n for the

mean-field Blume-Capel model is defined by

H
BC

n,K (ω) =
n

∑
j=1

ω2
j �

K

n

 
n

∑
j=1

ω j

!2

Here K represents the interaction strength of the model.

For inverse temperature β , the mean-field Blume-Capel (BC) model is defined

by the Gibbs ensemble

PBC
n,β ,K(ω) =

1

Zn(β ,K)
exp
⇥
�βH

BC
n,K (ω)

⇤

with partition function Zn(β ,K) = ∑ω2Λ n exp[�βH BC
n,K (ω)].

In Section 13.2, the phase transition structure of the BC model is described. The

analysis of Pn,β ,K is facilitated by expressing it in the form of a Curie-Weiss type

model. This is done by absorbing the noninteracting component of the Hamilto-

nian into the product measure Pn that assigns the probability 3�n to each ω 2 Λ n,

obtaining

PBC
n,β ,K(dω) =

1

Z̃n(β ,K)
· exp

"
nβK

✓
Sn(ω)

n

◆2
#

Pn,ρβ
(dω) (29)

In this formula, Pn,ρβ
is the product measure on Λ n with identical one-dimensional

marginals

ρβ (dω j) =
1

Z(β )
· exp(�βω2

j )ρ(dω j), (30)

Z(β ) is the normalizing constant
R

Λ exp(�βω2
j )ρ(dω j) = 1+ 2e�β , and Z̃n(β ,K)

is the new partition function [Z(β )]n/Zn(β ,K).

Although PBC
n,β ,K has the form of a Curie-Weiss model when rewritten as in (29),

it is much more complicated because of the β -dependent product measure Pn,ρβ
and

the presence of the parameter K. These complications introduce new features to the

BC model described that are not present in the Curie-Weiss model. In particular, the

type of equilibrium phase transition for the Curie-Weiss model is continuous with

respect to the temperature parameter β . On the other hand, in a certain region of

the (β ,K) parameter space of the mean-field Blume-Capel model, the model under-
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goes a first-order phase transition, which traditionally, is more difficult to analyze

rigorously. These aspects will be discussed in sections 13.1 and 13.2.

The Glauber dynamics for the mean-field Blume-Capel model evolves as follows.

Suppose the current configuration is Xt = ω . We sample Xt+1 by first selecting a

vertex at uniformly random with a choice variable Θ . Next, conditioned on Θ = i,

we update the spin at i to 1, 0, or �1 with the corresponding update probabilities

qi,ω(1) =
e2βKS̃(ω,i)/n

e2βKS̃(ω,i)/n + eβ�(βK)/n + e�2βKS̃(ω,i)/n
, (31)

qi,ω(0) =
eβ�(βK)/n

e2βKS̃(ω,i)/n + eβ�(βK)/n + e�2βKS̃(ω,i)/n
, (32)

and

qi,ω(�1) =
e�2βKS̃(ω,i)/n

e2βKS̃(ω,i)/n + eβ�(βK)/n + e�2βKS̃(ω,i)/n
, (33)

where S̃(ω, i) = ∑
j: j 6=i

ω j is the total spin of the neighboring vertices of i. Note

that here, qi,ω(1) is increasing with respect to S̃(ω, i), qi,ω(�1) is decreasing with

respect to S̃(ω, i), and qi,ω(0) is decreasing for S̃(ω, i) > 0 and increasing for

S̃(ω, i) < 0. Thus Condition 2 required for Lemma 6.1 and Corollary 6.3 of The-

orem 6.2 is satisfied.

10 Higher dimensional models

We now move onto statistical mechanical models for which the relevant macro-

scopic quantities are higher dimensional. As will be discussed in Chapter 7, the

aggregate path coupling theory is greatly more complex in the higher dimensional

setting.

Let q be a fixed integer and define Λ = {e1,e2, . . . ,eq}, where ek is the kth stan-

dard basis vector of Rq, for k = 1, . . . ,q. A configuration of the higher dimensional

models has the form ω = (ω1,ω2, . . . ,ωn)2Λ n. We will consider a configuration on

a graph with n vertices and let Xi(ω) = ωi be the spin at vertex i. The random vari-

ables Xi’s for i= 1,2, . . . ,n are independent and identically distributed with common

uniform distribution ρ = 1
q

q

∑
k=1

δek . We also denote by ρ = (ρ1, . . . ,ρq) the probabil-

ity vector in R
q all of whose coordinates equal ρk = q�1.

In terms of the microscopic quantities, the spins at each vertex, the relevant

macroscopic quantity is the empirical measure (a.k.a proportion vector)

Ln(ω) = (Ln,1(ω),Ln,2(ω), . . . ,Ln,q(ω)), (34)
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where the kth component is defined by

Ln,k(ω) =
1

n

n

∑
i=1

δ (ωi,e
k)

which yields the proportion of spins in configuration ω that take on the value ek.

The empirical measure Ln takes values in the set of probability vectors

Pn,q =

(⇣n1

n
,

n2

n
, . . . ,

nq

n

⌘
: each nk 2 {0,1, . . . ,n} and

q

∑
k=1

nk = n

)
(35)

inside the continuous simplex

Pq =

(
ν 2 R

q : ν = (ν1,ν2, . . . ,νq),each νk � 0,
q

∑
k=1

νk = 1

)
.

Remark 1. For q = 2, the empirical measure Ln yields the magnetization Sn(ω)/n in

Subsection 9.1.

10.1 A general class of empirical measure models

The first class of higher dimensional models we consider are defined on the com-

plete graph Kn in terms of general Hamiltonian functions whose corresponding in-

teraction representation functions satisfies the assumptions stated below. As men-

tioned at the start of this chapter, statistical mechanical models are defined in terms

of the Hamiltonian function, denoted by H EM
n (ω) for this class of higher dimen-

sional models, which encodes the interactions of the individual spins and the to-

tal energy of a configuration. The link between the microscopic interactions to the

macroscopic quantity, in this case Ln(ω), is the interaction representation function,

which we define again for convenience.

For z 2 R
q, the interaction representation function, denoted by H(z), is a differ-

entiable function satisfying

H
EM

n (ω) = nH(Ln(ω))

For this class of models, we suppose the interaction representation function H(z) is

a finite concave C 3(Rq) function. For example, for the Curie-Weiss-Potts (CWP)

model5,

H(z) =�
1

2

⌦
z,z
↵
=�

1

2
z2

1 �
1

2
z2

2 � . . .�
1

2
z2

q.

5 CWP is a mean-field version [27] of the classical Potts model [44].
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The general class of Gibbs ensembles with respect to the empirical measure Ln

considered in this section is defined by

PEM
n,β (B) =

1

Zn(β )

Z

B
exp
�
�βH

EM
n (ω)

 
dPn (36)

=
1

Zn(β )

Z

B
exp{�βnH (Ln(ω))}dPn

where Pn is the product measure with identical marginals ρ and

Zn(β ) =
Z

Λ n
exp
�
�βH

EM
n (ω)

 
dPn

is the partition function.

Remark 2. To simplify the presentation, we take Λ = {e1,e2, . . . ,eq}, where ek are

the q standard basis vectors of Rq. But our analysis has a straight-forward general-

ization to the case where Λ = {θ 1,θ 2, . . . ,θ q}, where θ k is any basis of Rq. In this

case, the product measure Pn would have identical one-dimensional marginals equal

to

ρ̄ =
1

q

q

∑
i=1

δθ i

For a given configuration σ = (σ1,σ2, . . . ,σn), denote by σi,ek the configuration that

agrees with σ at all vertices j 6= i and the spin at the vertex i is ek; i.e.

σi,ek = (σ1,σ2, . . . ,σi�1,e
k,σi+1, . . . ,σn)

On the configuration space Λ n, the Glauber dynamics for the class of Gibbs ensem-

bles PEM
n,β defined in (36) is constructed as follows. Suppose Xt = σ . We select a

vertex uniformly at random from n vertices with a choice variable Θ . Conditioned

on Θ = i, we update the spin at i to ek with probability equal to

qi,σ (e
k) =

exp
�
�βnH(Ln(σi,ek))

 

∑
q
`=1 exp

�
�βnH(Ln(σi,e`))

 k = 1, . . . ,q. (37)

Let the logarithmic moment generating function of the individual spins be defined

by

Γ (z) = log

 
1

q

q

∑
k=1

exp{zk}

!
. (38)

Next, we show that the update probabilities of the Glauber dynamics above can be

expressed in terms of the derivatives of Γ . The partial derivative of Γ in the direction

of e` has the form

[∂`Γ ] (z) =
exp{z`}

∑
q
k=1 exp{zk}

.
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Lemma 10.1 Let qi,σ (e
k) be the Glauber dynamics update probabilities given in

(37). Then, for any k 2 {1,2, . . . ,q},

qi,σ (e
k) = [∂kΓ ]

⇣
�β∇H(Ln(σ))�

β

2n
QH(Ln(σ))+

β

n

D
σi,QH(Ln(σ))

E
σi

⌘

+O

✓
1

n2

◆
, (39)

where Q is the following linear operator:

QF(z) :=
�
∂ 2

1 F(z), ∂ 2
2 F(z), . . . , ∂ 2

q F(z)
�
,

for any F : Rq ! R in C 2.

Proof. Suppose σi = em. By Taylor’s theorem, for any k,

H(Ln(σi,ek)) = H(Ln(σ))+
1

n

D
ek � em,∇H(Ln(σ))

E
+O

✓
1

n2

◆

= H(Ln(σ))+
1

n
[∂kH(Ln(σ))�∂mH(Ln(σ))]+O

✓
1

n2

◆
.

Thus, since exp
�

O
⇣

1
n2

⌘ 
= 1+O

⇣
1
n2

⌘
, the transition probability (37) has the form

(39).

We introduce the following function that plays the key role in our analysis. Let

g
H,β
`

(z) = [∂`Γ ] (�β∇H(z)) =
exp(�β [∂`H](z))

∑
q
k=1 exp(�β [∂kH](z))

, (40)

and denote

gH,β (z) :=
⇣

g
H,β
1 (z), . . . ,gH,β

q (z)
⌘
. (41)

Note that gH,β (z) maps the simplex

P =

(
ν 2 R

q : ν = (ν1,ν2, . . . ,νq),each νk � 0,
q

∑
k=1

νk = 1

)

into itself.

Next, using Taylor expansion, Lemma 10.1 can be restated in terms of gH,β (z).

Corollary 10.2 Let qi,σ (e
k) be the Glauber dynamics update probabilities given in

(37). Then, for any k 2 {1,2, . . . ,q},

qi,σ (e
k) = g

H,β
k (Ln(σ))+

β

n
ϕ

H,β
k,σi

(Ln(σ))+O

✓
1

n2

◆
,

where
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ϕ
H,β
k,er (z) :=�

1

2

D
QH(z), [∇∂kΓ ] (�β∇H(z))

E
+
D

er,QH(z)
ED

er, [∇∂kΓ ] (�β∇H(z))
E
.

10.2 The Potts model on the bipartite graph

The final statistical mechanical model we introduce is the Potts model on the bipar-

tite graph Kn,n. The additional feature this model provides is an example of a non-

classical mean-field model, which can be viewed as models defined on the complete

graph, since every spin interacts with every other spin.

For Λ = {e1,e2, . . . ,eq}, a configuration of a model on the bipartite graph Kn,n

has the form (σ ,τ) 2 Λ n ⇥Λ n, where the spin configuration on the left set of n

vertices of Kn,n is denoted by σ and the spin configuration on the right set of n

vertices is denoted by τ . The Hamiltonian for the Potts model on the bipartite graph

Kn,n is defined by

H
BP

n (σ ,τ) =�
1

n

n

∑
i=1

n

∑
j=1

δ (σi,τ j),

where δ (u,v) =

(
1 if u = v

0 if u 6= v
. Note that with the Hamiltonian defined as above,

the interactions of the model are governed by the edges of the bipartite graph Kn,n;

more specifically, the spin values of σ on the left side of the bipartite graph Kn,n

only interact with the spin values of τ on the right side of Kn,n.

The Potts model on the bipartite graph or the bipartite Potts model (BPM) is

defined by the probability of (σ ,τ)2Λ n⇥Λ n, corresponding to inverse temperature

β > 0 given by the Gibbs ensemble

Pn,n,β (σ ,τ) =
1

Zn,n(β )
exp(�βH

BP
n (σ ,τ))Pn⇥Pn(σ ,τ) (42)

where Zn,n(β ) is the partition function

Zn,n(β ) =
Z

Λ n⇥Λ n

exp(�βH
BP

n (σ ,τ))dPn⇥Pn(σ ,τ) = ∑
σ ,τ2Λ n

exp(�βH
BP

n (σ ,τ))
1

q2n
.

In terms of the microscopic quantities, the spins at each vertex of Kn,n, the

relevant macroscopic quantity is the pair of empirical measures
�
Ln(σ),Ln(τ)

�
2

R
q ⇥R

q with

Ln(ω) =
�
Ln,1(ω),Ln,2(ω), . . . ,Ln,q(ω)

�
, (43)

where the kth component is defined by

Ln,k(ω) =
1

n

n

∑
i=1

δ (ωi,e
k)



36

which yields the proportion of spins in ω 2 Λ n that take on the value ek.

Let h·, ·i denote the inner product on R
q. Then, since

hLn(σ),Ln(τ)i =
q

∑
k=1

Ln,k(σ)Ln,k(τ)

=
q

∑
k=1

 
1

n

n

∑
i=1

δ (σi,e
k)

! 
1

n

n

∑
j=1

δ (τ j,e
k)

!

=
1

n2

n

∑
i, j=1

q

∑
k=1

δ (σi,e
k)δ (τ j,e

k) =
1

n2

n

∑
i, j=1

δ (σi,τ j),

it follows that the Hamiltonian for the bipartite Potts model can be rewritten as

H
BP

n (σ ,τ) =�nhLn(σ),Ln(τ)i.

Hence,

Pn,n,β (σ ,τ) =
1

Zn,n(β )
exp [nβ hLn(σ),Ln(τ)i]Pn⇥Pn(σ ,τ),

where

Zn,n(β ) =
Z

Λ n⇥Λ n
exp [nβ hLn(σ),Ln(τ)i]dPn⇥Pn(σ ,τ).

The above expression of Pn,n,β allows us to define the interaction representation

function for the bipartite Potts model H : Rq ⇥R
q ! R as follows

H(x,y) =�hx,yi=�x1y1 � x2y2 � · · ·� xqyq. (44)

This function is a finite C ∞(Rq ⇥R
q) function satisfying

H
BP

n (σ ,τ) = nH(Ln(σ),Ln(τ)).

Utilizing the interaction representation function H, the bipartite Potts model can be

expressed as

Pn,n,β (B) =
1

Zn,n(β )

Z

B
exp [�βnH(Ln(σ),Ln(τ))]dPn ⇥dPn,

where Pn is the product measure with identical marginals ρ , B belong to the σ -field

of subsets of Λ n ⇥Λ n, and

Zn,n(β ) =
Z

Λ n⇥Λ n
exp [�βnH(Ln(σ),Ln(τ))]dPn ⇥dPn.

The free energy for the model is the quantity ψ(β ) defined by the limit

�βψ(β ) = lim
n!∞

1

2n
logZn,n(β ). (45)
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For any given configuration ω = (ω1, . . . ,ωn) 2 Λ n, denote by ωi,ek the configura-

tion that agrees with ω at all vertices j 6= i and the spin at vertex i is ek; i.e.

ωi,ek = (ω1, . . . ,ωi�1,e
k,ωi+1, . . . ,ωn).

Below, we will describe the Glauber dynamics for the bipartite Potts model over the

configuration space Λ n⇥Λ n. Suppose the current spin configuration on the bipartite

graph Kn,n is Xt = (σ ,τ). Sampling Xt+1 is done in two steps, as described at the

beginning of Section 5 in Chapter 2. First, the choice variable Θ selects one of the

2n vertices in Kn,n with probability 1
2n

. It could be vertex i on the “left” side of the

bipartite graph Kn,n, or vertex i on the “right” side of the graph. Next, we update the

spin value at the vertex Θ with one of the two possible kinds of update probabilities,

one for the left side of the graph and one for the right side. Specifically, if Θ selects

a site i on the left side of Kn,n, then the probability of updating the left configuration

from σ to σi,ek is

q`i,σ ,τ(e
k) =

exp{�βnH(Ln(σi,ek),Ln(τ))}
q

∑
l=1

exp{�βnH(Ln(σi,el ),Ln(τ))}

. (46)

Similarly, if Θ selects a site i on the right side of Kn,n, then the probability of updat-

ing the right configuration from τ to τi,ek is

qr
i,σ ,τ(e

k) =
exp{�βnH(Ln(σ),Ln(τi,ek))}

q

∑
l=1

exp{�βnH(Ln(σ),Ln(τi,el ))}

. (47)

The above Glauber dynamics is a reversible Markov chain with stationary distribu-

tion Pn,n,β defined in (42).

The logarithmic moment generating function for the bipartite Potts model is

Γ (x,y) = log

 
1

q

q

∑
i=1

exi

!
+ log

 
1

q

q

∑
i=1

eyi

!
. (48)

Now, as it was done in Lemma 10.1 of Section 10.1, we show that the update prob-

abilities of the Glauber dynamics introduced above can be expressed in terms of the

derivatives of Γ . For our analysis we introduce the following two functions

gH,β
xl

(x,y) = [∂xl
Γ ]
�
�β∇H(x,y)

�
=

exp{βyl}
q

∑
k=1

exp{βyk}

(49)

and
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gH,β
yl

(x,y) = [∂yl
Γ ]
�
�β∇H(x,y)

�
=

exp{βxl}
q

∑
k=1

exp{βxk}

(50)

Next, we make an important observation that will be used later in the paper. We

notice that g
H,β
xl

(x,y) only depends on y and g
H,β
yl

(x,y) only depends on x.

Also we define gH,β : Pq ⇥Pq ! Pq ⇥Pq as follows:

gH,β (x,y) =
�
(gH,β

x1
, . . . ,gH,β

xq
),(gH,β

y1
, . . . ,gH,β

yq
)
�
.

Our next result is the following lemma.

Lemma 10.3 Let q`i,σ ,τ(e
k) and qr

i,σ ,τ(e
k) be the update probabilities given in (46)

and (47), respectively. Then, for any k 2 {1, . . . ,q},

q`i,σ ,τ(e
k) = gH,β

xk

�
Ln(σ),Ln(τ)

�
+O

✓
1

n2

◆
, (51)

and

qr
i,σ ,τ(e

k) = gH,β
yk

�
Ln(σ),Ln(τ)

�
+O

✓
1

n2

◆
. (52)

Proof. Suppose Θ selects a site i on the left side of Kn,n, and σi = em. We consider

the probability q`i,σ ,τ(e
k) of updating from (σ ,τ) ! (σi,ek ,τ). Given the interac-

tion representation function H(x,y) =�hx,yi, we have that its gradient and Hessian

matrix are given by

∇H(x,y) =�(y1, . . . ,yq,x1, . . . ,xq),

and

Hess(H) =

0
BBBBBBBBBBBB@

0 0 · · · 0 �1 0 · · · 0

0 0 · · · 0 0 �1 · · · 0
...

...
. . .

...
...

...
. . .

...

0 0 · · · 0 0 0 · · · �1

�1 0 · · · 0 0 0 · · · 0

0 �1 · · · 0 0 0 · · · 0
...

...
. . .

...
...

...
. . .

...

0 0 · · · �1 0 0 · · · 0

1
CCCCCCCCCCCCA

2q⇥2q

Applying Taylor’s theorem to the function H we have
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H(Ln(σi,ek),Ln(τ))

= H(Ln(σ),Ln(τ))+
q

∑
l=1

∂H

∂xl

(Ln(σ),Ln(τ))
h
Ln,l(σi,ek)�Ln,l(σ)

i
+

1

2
(Ln(σi,ek)�Ln(σ),0, . . . ,0)T Hess(H)(Ln(σi,ek)�Ln(σ),0, . . . ,0)+o

✓
1

n2

◆

= H(Ln(σ),Ln(τ))+
q

∑
l=1

�Ln,l(τ)
h
Ln,l(σi,ek)�Ln,l(σ)

i
+o

✓
1

n2

◆
.

Now, note that

Ln,l(σi,ek)�Ln,l(σ) =
1

n
(δ (ek,el)�δ (σi,e

l)).

Thus, since σi = em,

q

∑
l=1

�Ln,l(τ)
h
Ln,l(σi,ek)�Ln,l(σ)

i
=

1

n

�
�Ln,k(τ)+Ln,m(τ)

�

=
1

n

✓
∂H

∂xk

(Ln(σ),Ln(τ))�
∂H

∂xm

(Ln(σ),Ln(τ))

◆
.

Therefore, we have that

H(Ln(σi,ek),Ln(τ)) =

H(Ln(σ),Ln(τ))+
1

n

✓
∂H

∂xk

(Ln(σ),Ln(τ))�
∂H

∂xm

(Ln(σ),Ln(τ))

◆
+o

✓
1

n2

◆
.

Similarly, if Θ selects a site i on the right side of Kn,n, and if τi = em. Then, consid-

ering the probability qr
i,σ ,τ(e

k) of updating from (σ ,τ)! (σ ,τi,ek), we obtain

H(Ln(σ),Ln(τi,ek)) =

H(Ln(σ),Ln(τ))+
1

n

✓
∂H

∂yk

(Ln(σ),Ln(τ))�
∂H

∂ym

(Ln(σ),Ln(τ))

◆
+o

✓
1

n2

◆
.

The above two expressions, together with (49) and (50), imply that the transition

probabilities (46) and (47) can be expressed as in (51) and (52) respectively.

Now, as it was observed following formula (50), the function g
H,β
xk

(x,y) depends

only on y and g
H,β
yk

(x,y) depends only on x. Consequently, it is convenient to intro-

duce the following function gH,β (z) : Pq ! Pq, for z 2 Pq, defined as

gH,β (z) =
�
g

H,β
1 (z),g

H,β
2 (z), . . . ,gH,β

q (z)
�

where g
H,β
k (z) =

exp{β zk}
q

∑
j=1

exp{β z j}

.
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Then,

gH,β (x,y) =
�
(gH,β

x1
, . . . ,gH,β

xq
),(gH,β

y1
, . . . ,gH,β

yq
)
�
=
�
gH,β (y),gH,β (x)

�
.

Utilizing this new notation for g
H,β
xk

and g
H,β
yk

, we rewrite the probability transitions

in Lemma 10.3 as follows.

Corollary 10.4 Let q`i,σ ,τ(e
k) and qr

i,σ ,τ(e
k) be the update probabilities given in (46)

and (47), respectively. Then, for any k 2 {1, . . . ,q},

q`i,σ ,τ(e
k) = g

H,β
k (Ln(τ))+O

✓
1

n2

◆
,

and

qr
i,σ ,τ(e

k) = g
H,β
k (Ln(σ))+O

✓
1

n2

◆
.

This new expression emphasizes the fact that the probability transition on the left

side depend on the right configuration in the bipartite graph Kn,n, and vice versa.

Note that the above definition of gH,β (z) is consistent with (40) in Section 10.1.

11 Phase transitions: continuous and first-order

While the method of aggregate path coupling is general enough to be applied to

various settings, the motivation for the development of the theory was to provide a

new efficient and effective method for analyzing dynamics of statistical mechanical

models. In particular, as mentioned in the Preface, aggregate path coupling was first

derived to investigate the deep connection between mixing times of the dynamics

and the corresponding equilibrium phase transition behavior of the statistical me-

chanical model for the case where the phase transition is of type “first-order”, for

which the classical path coupling method fails.

The term “first, second, and higher order phase transition” began with the Ehren-

fest classification of phase transitions in 1933 where the “order” corresponded to the

highest order of the free energy function that has a (jump) discontinuity at the phase

transition critical value. See [32] for history of the Ehrenfest classification. After

some initial success in applying the Ehrenfest classification to known phase transi-

tions of physical systems, researchers discovered examples of phase transitions that

lied outside of the Ehrenfest classification and by “the 1970’s, a radically simplified

binary classification of phase transitions into ‘first-order’ and ‘continuous’ tran-

sitions was increasingly adopted” [32]. In this context, “first-order” refers to the

case where the relevant macroscopic quantity of the system exhibits a discontinuous

transition with respect to some parameter; e.g. external temperature. A “continuous”

transition refers to all cases where the macroscopic quantity exhibits a continuous

transition regardless of the order of the free energy derivative that is discontinuous

at the transition value. With this evolution of the Ehrenfest classification of phase
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transitions, the term first-order has become synonymous with a discontinuous tran-

sition of the macroscopic quantity of the system and second-order synonymous with

a continuous transition. In this book, we will adopt this binary classification of con-

tinuous and first-order phase transition and in Chapter 4, we define the two types

of phase transitions in terms of large deviation theory. More on phase transitions in

general can be found in [42].





Chapter 4

Large deviations and equilibrium macrostate
phase transitions

The application of the aggregate path coupling method to prove rapid mixing takes

advantage of large deviations estimates that these models satisfy. In this chapter, we

first give a brief summary of large deviation theory used in this book, written in the

context of Gibbs ensembles defined in Chapter 3. For a more complete theory of

large deviations see for example [14] and [21]. We then define the set of equilib-

rium macrostates in terms of the large deviation principle upper bound, as originally

defined in [22]. In section 12, we define the types of phase transitions in terms of the

sets of equilibrium macrostates and, in the following sections, we give descriptions

of the phase transition behaviors of the four classes of models introduced in Chapter

3.

A function I on R
q is called a rate function if I maps R

q to [0,∞] and has

compact level sets.

Definition 11.1 Let Iβ be a rate function on R
q. The sequence {Mn} with respect to

the Gibbs ensemble Pn,β is said to satisfy the large deviation principle (LDP) on

R
q with rate function Iβ if the following two conditions hold.

For any closed subset F,

limsup
n!∞

1

n
logPn,β{Mn 2 F}�Iβ (F) (53)

and for any open subset G,

liminf
n!∞

1

n
logPn,β{Mn 2 G}��Iβ (G) (54)

where Iβ (A) = infz2A Iβ (z).

The LDP upper bound in the above definition implies that values z satisfying

Iβ (z) > 0 have an exponentially small probability of being observed as n ! ∞.

Hence we define the set of equilibrium macrostates of the system by

Eβ = {z : Iβ (z) = 0}. (55)

43
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12 Continuous versus first-order phase transitions via LDP

theory

For the class of Gibbs ensembles studied in this book, the set of equilibrium

macrostates exhibits the following general behavior. There exists a phase transition

critical value, denoted by βc, of the inverse temperature parameter β such that

(a) For 0 < β < βc, the set Eβ consists of a single equilibrium macrostate (single

phase); i.e.

Eβ = {z̃β}

(b) For βc < β , the set Eβ consists of a multiple equilibrium macrostates (multiple

phase); i.e.

Eβ = {zβ ,1,zβ ,2, . . . ,zβ ,q}

The transition from the single phase to the multiple phase follows one of two general

types as discussed in Section 11 of Chapter 3.

(I) Continuous phase transition: For all j = 1,2, . . . ,q,

lim
β!β+

c

zβ , j = z̃β

(II) First-order phase transition: For all j = 1,2, . . . ,q,

lim
β!β+

c

zβ , j 6= z̃β

As mentioned throughout the book, understanding the relationship between the mix-

ing times of the Glauber dynamics and the equilibrium phase transition structure of

the corresponding Gibbs ensembles is a major motivation for the theory of aggregate

path coupling.

Recent rigorous results for statistical mechanical models that undergo continuous

phase transitions, like the famous Ising model, have been published in [37, 36, 16].

For these models, it has been shown that the mixing times undergo a transition

at precisely the thermodynamic phase transition point βc. In order to show rapid

mixing in the subcritical parameter regime (β < βc) for these models, the classical

path coupling method can be applied directly.

However, for models that exhibit a first-order phase transition; e.g. Potts model

with q > 2 [44, 12] and the Blume-Capel model [3, 4, 8, 9, 10, 26] with weak

interaction, the mixing time transition does not coincide with the thermodynamic

equilibrium phase transition.

First-order phase transitions are more intricate than their counterpart, which

makes rigorous analysis of these models traditionally more difficult. Furthermore,

the more complex phase transition structure causes certain parameter regimes of the

models to fall outside the scope of standard mixing time techniques including the
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classical path coupling method discussed in subsection 6. This was the motivation

for the development of the aggregate path coupling method.

13 Equilibrium phase structure of four classes of models

From the discussion in the previous two sections, the equilibrium phase transi-

tion structure of statistical mechanical models are derived from the large deviation

principle of the macroscopic quantity with respect to the Gibbs ensemble for each

model. The LDP then defines the set of equilibrium macrostates of the model as

zeros of the LDP rate function. In the following subsections, for the four classes of

models introduced in Chapter 3, we (a) state the LDP, (b) define the set of equilib-

rium macrostates, and (c) determine the set of equilibrium macrostates in terms of

the model parameters which will reveal the phase transition structure of the model.

13.1 Curie-Weiss model

We begin by defining the rate function in Cramér’s theorem

I(x) =
1

2
(1� x) log(1� x)+

1

2
(1+ x) log(1+ x)

which states the LDP for Sn/n with respect to the product measures Pn [21, Thm.

II.4.1]. From the LDP with respect to Pn, applying Theorem 3.3 in [26], we get the

LDP for Sn/n with respect to the Curie-Weiss model Pn,β , which is stated next.

Theorem 13.1 For all β > 0, with respect to Pn,β , Sn/n satisfies the large deviation

principle on [�1,1] with rate function

Iβ (x) = I(x)�
1

2
βx2 � inf

y2[�1,1]

⇢
I(y)�

1

2
βy2

�
.

From the LDP stated in Theorem 13.1, we define the set of equilibrium macrostates

for the Curie-Weiss model to be

Eβ = {x 2 [�1,1] : Iβ (x) = 0}= {x 2 [�1,1] : I(x)�
1

2
βx2 is minimized}.

From this definition, the equilbrium macrostates x⇤ satisfy I0(x⇤) = βx⇤. This equa-

tion is equivalent to the mean-field equation

x⇤ = (I0)�1(βx⇤) = tanh(βx⇤).

The full description of Eβ is stated in the following theorem.
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cβ (t) = log

Z

Λ
exp(tω1)ρβ (dω1) = log

"
1+ e�β (et + e�t)

1+2e�β

#
(56)

We also introduce the Legendre-Fenchel transform of cβ , which is defined for z 2
[�1,1] by

Jβ (z) = sup
t2R

{tz� cβ (t)}

and is finite for z 2 [�1,1]. Jβ is the rate function in Cramér’s theorem, which is the

LDP for Sn/n with respect to the product measures Pn,β [21, Thm. II.4.1] and is one

of the components of the proof of the LDP for Sn/n with respect to the BC model

Pn,β ,K . This LDP is stated in the next theorem and is proved in Theorem 3.3 in [26].

Theorem 13.4 For all β > 0 and K > 0, with respect to Pn,β ,K , Sn/n satisfies the

large deviation principle on [�1,1] with rate function

Iβ ,K(z) = Jβ (z)�βKz2 � inf
y2R

{Jβ (y)�βKy2}.

The LDP in the above theorem implies that those z 2 [�1,1] satisfying Iβ ,K(z) > 0

have an exponentially small probability of being observed as n ! ∞. Hence, the set

of equilibrium macrostates (55) is defined by

Eβ ,K = {z 2 [�1,1] : Iβ ,K(z) = 0}.

For z 2 R we define

Gβ ,K(z) = βKz2 � cβ (2βKz) (57)

and as in [24] and [25] refer to it as the free energy functional of the BC model.

The calculation of the zeroes of Iβ ,K — equivalently, the global minimum points

of Jβ ,K(z)� βKz2 — is greatly facilitated by the following observations made in

Proposition 3.4 in [26]:

1. The global minimum points of Jβ ,K(z)�βKz2 coincide with the global minimum

points of Gβ ,K , which are much easier to calculate.

2. The minimum values minz2R{Jβ ,K(z)�βKz2} and minz2R{Gβ ,K(z)} coincide.

From 1, we get the alternate characterization that

Eβ ,K = {z 2 [�1,1] : z minimizes Gβ ,K(z)}. (58)

The free energy functional Gβ ,K exhibits two distinct behaviors depending on

whether β  βc = log4 or β > βc. In the first case, the behavior is similar to the

Curie-Weiss model. Specifically, there exists a critical value K
(2)
c (β ) defined in (59)

such that for K < K
(2)
c (β ), Gβ ,K has a single minimum point at z = 0. At the critical

value K = K
(2)
c (β ), Gβ ,K develops symmetric non-zero minimum points and a local

maximum point at z = 0. This behavior corresponds to a continuous phase transition

and is illustrated in Figure 6.
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Κ < Κ
c

( )β
(2)

Κ = Κ
c

( )β
(2) Κ > Κ

c
( )β

(2)

Κ >> Κ
c

( )β
(2)

Fig. 6 The free-energy functional Gβ ,K for β  βc

On the other hand, for β > βc, Gβ ,K undergoes two transitions at the values

denoted by K1(β ) and K
(1)
c (β ). For K < K1(β ), Gβ ,K again possesses a single min-

imum point at z = 0. At the first critical value K1(β ), Gβ ,K develops symmetric

non-zero local minimum points in addition to the global minimum point at z = 0.

These local minimum points are referred to as metastable states and we refer to

K1(β ) as the metastable critical value. This value is defined implicitly in Lemma

3.9 of [26] as the unique value of K for which there exists a unique z > 0 such that

G0
β ,K1(β )

(z) = 0 and G00
β ,K1(β )

(z) = 0

As K increases from K1(β ) to K
(1)
c (β ), the local minimum points decrease until at

K = K
(1)
c (β ), the local minimum points reach zero and Gβ ,K possesses three global

minimum points. Therefore, for β > βc, the BC model undergoes a phase transition

at K = K
(1)
c (β ), which is defined implicitly in [26]. Lastly, for K > K

(1)
c (β ), the

symmetric non-zero minimum points drop below zero and thus Gβ ,K has two sym-

metric non-zero global minimum points. This behavior corresponds to a first-order

phase transition and is illustrated in Figure 7.

In the next two theorems, the structure of Eβ ,K corresponding to the behavior of

Gβ ,K just described is stated which depends on the relationship between β and the

critical value βc = log4. We first describe Eβ ,K for 0 < β  βc and then for β > βc.

In the first case Eβ ,K undergoes a continuous bifurcation as K increases through the

critical value K
(2)
c (β ) defined in (59); physically, this bifurcation corresponds to a

continuous phase transition. The following theorem is proved in Theorem 3.6 in

[26].

Theorem 13.5 For 0 < β  βc, we define

K
(2)
c (β ) =

1

2βc00
β
(0)

=
eβ +2

4β
. (59)

For these values of β , Eβ ,K has the following structure.

(a) For 0 < K  K
(2)
c (β ), Eβ ,K = {0}.

(b) For K > K
(2)
c (β ), there exists z(β ,K)> 0 such that Eβ ,K = {±z(β ,K)}.
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Κ Κ (β)<
c1

Κ Κ (β)=
1

ΚΚ (β) <
1

< Κ  (β)(1)

c
Κ  (β)(1)Κ =

c
Κ  (β)(1)Κ >

Fig. 7 The free-energy functional Gβ ,K for β > βc

(c) z(β ,K) is a positive, increasing, continuous function for K > K
(2)
c (β ), and as

K ! (K
(2)
c (β ))+, z(β ,K)! 0. Therefore, Eβ ,K exhibits a continuous bifurcation at

K
(2)
c (β ).

For β 2 (0,βc), the curve (β ,K
(2)
c (β )) is the curve of second-order critical points.

As we will see in a moment, for β 2 (βc,∞) the BC model also has a curve of

first-order critical points, which we denote by (β ,K
(1)
c (β )).

We now describe Eβ ,K for β > βc. In this case Eβ ,K undergoes a discontinuous

bifurcation as K increases through an implicitly defined critical value. Physically,

this bifurcation corresponds to a first-order phase transition. The following theorem

is proved in [26].

Theorem 13.6 For all β > βc, Eβ ,K has the following structure in terms of the quan-

tity K
(1)
c (β ) defined implicitly for β > βc in [26].

(a) For 0 < K < K
(1)
c (β ), Eβ ,K = {0}.

(b) There exists z(β ,K
(1)
c (β ))> 0 such that E

β ,K
(1)
c (β )

= {0,±z(β ,K
(1)
c (β ))}.

(c) For K > K
(1)
c (β ) there exists z(β ,K)> 0 such that Eβ ,K = {±z(β ,K)}.

(d) z(β ,K) is a positive, increasing, continuous function for K � K
(1)
c (β ), and as

K ! K
(1)
c (β )+, z(β ,K)! z(β ,K

(1)
c (β )) > 0. Therefore, Eβ ,K exhibits a discontin-

uous bifurcation at K
(1)
c (β ).

The phase diagram of the BC model is depicted in Figure 8. The LDP stated in

Theorem 13.4 implies the following weak convergence result used in the proof of
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Fig. 8 Equilibrium phase transition structure of the mean-field Blume-Capel model

rapid mixing in the first-order phase transition region. It is part (a) of Theorem 6.5

in [26].

Theorem 13.7 For β and K for which Eβ ,K = {0},

Pn,β ,K{Sn/n 2 dx}=) δ0 as n ! ∞.

13.3 A general class of empirical measure models

By Sanov’s Theorem, the empirical measure Ln satisfies the large deviation principle

(LDP) with respect to the product measure Pn with identical marginals ρ and the rate

function is defined in terms of the relative entropy

R(ν |ρ) =
q

∑
k=1

νk log

✓
νk

ρk

◆

for ν 2 Pn. Theorem 2.4 of [22] yields the following result for the Gibbs measures

Pn,β (36).

Theorem 13.8 The empirical measure Ln satisfies the LDP with respect to the

Gibbs measure Pn,β with rate function
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Iβ (z) = R(z|ρ)+βH(z)� inf
t
{R(t|ρ)+βH(t)}.

As discussed at the start of this chapter, the LDP upper bound stated in the previous

theorem yields the following natural description of equilibrium macrostates (55) for

the model

Eβ := {ν 2 P : ν minimizes R(ν |ρ)+βH(ν)} . (60)

For our main result, we assume that there exists a positive interval B such that for

all β 2 B, Eβ consists of a single state zβ . We refer to this interval B as the single

phase region.

Again, from the LDP upper bound, when β lies in the single phase region, we get

Pn,β (Ln 2 dx) =) δzβ
as n ! ∞. (61)

The above asymptotic behavior will play a key role in obtaining a rapid mixing time

rate for the Glauber dynamics corresponding to the Gibbs measures (36).

An important quantity in our work is the free energy functional, defined below in

terms of the interaction representation function H and the logarithmic moment gen-

erating function of the individual spins Γ introduced in (38).

Definition 13.9 The free energy functional for the Gibbs ensemble Pn,β is defined

as

Gβ (z) = β (�H)⇤(�∇H(z))�Γ (�β∇H(z)) (62)

where for a finite, differentiable, convex function F on R
q, F⇤ denotes its Legendre-

Fenchel transform defined by

F⇤(z) = sup
x2Rq

{hx,zi�F(x)}

The following lemma yields an alternative formulation of the set of equilibrium

macrostates of the Gibbs ensemble in terms of the free energy functional. The proof

is a straightforward generalization of Theorem A.1 in [12].

Lemma 13.10 Suppose H is finite, differentiable, and concave. Then

inf
z2P

{R(z|ρ)+βH(z)}= inf
z2Rq

{Gβ (z)}

Moreover, z0 2 P is a minimizer of R(z|ρ)+βH(z) if and only if z0 is a minimizer

of Gβ (z).

Therefore, the set of equilibrium macrostates can be expressed in terms of the free

energy functional as

Eβ =
�

z 2 P : z minimizes Gβ (z)
 

(63)

As mentioned above, we consider only the single phase region of the Gibbs en-

semble; i.e. values of β where Gβ (z) has a unique global minimum. For example,
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for the Curie-Weiss-Potts model [12], the single phase region are values of β such

that 0 < β < βc. At this critical value βc, the model undergoes a first-order phase

transition in which the single phase changes to a multiple phase discontinuously.

Specifically, Ellis and Wang [27] show the following result.

Consider the Curie-Weiss-Potts model. Define the function ϕ : [0,1]! Pq as fol-

lows

ϕ(s) =

✓
1+(q�1)s

q
,

1� s

q
, . . . ,

1� s

q

◆
,

and let zβ =
⇣

1
q
, . . . , 1

q

⌘
.

Theorem 13.11 Fix a positive integer q � 3. Let βc = 2
q�2
q�1

log(q � 1), and for

β > 0 let s(β ) denote the largest root of the equation

s =
1� eβ s

1+(q�1)e�β s
.

The following conclusions hold.

(a) The quantity s(β ) is well defined. It is positive, strictly increasing, and differen-

tiable with respect to β in an open interval containing [βc,∞). Also, s(βc) =
q�2
q�1

,

and limβ!∞ s(β ) = 1.

(b) For β � βc, define ν1 = ϕ(s(β )) and let ν i (i = 1,2, . . . ,q) denote the points in

R
q obtained by interchanging the first and the ith coordinates of ν1. Then

Eβ =

8
<
:

{zβ} for 0 < β < βc,
{ν1, . . . ,νq} for β > βc,

{zβ ,ν
1, . . . ,νq} for β = βc

(64)

For all β � βc, the points in Eβ are all distinct. The point ν1(βc) equals

ϕ(s(βc)) = ϕ((q�2)/(q�1)).

As we will show in Chapter 7, the geometry of the free energy functional Gβ not

only determines the equilibrium behavior of the Gibbs ensembles but it also yields

the condition for rapid mixing of the corresponding Glauber dynamics.

We end this section by deriving the equilibrium phase structure for a specific sub-

class of empirical measure models, called the generalized Curie-Weiss-Potts model

(GCWP), studied recently in [33]. The classical Curie-Weiss-Potts (CWP) model,

which is the mean-field version of the well known Potts model of statistical me-

chanics [44] is a particular case of the GCWP model with r = 2. The mixing times

for the CWP model has been studied in [13] without the theory of aggregate path

coupling. In [35], the first results for the mixing times of the GCWP model were

derived using aggregate path coupling. These mixing time results are presented in

Section 21 as an application of the general aggregate path coupling theory in higher

dimensions developed in Section 20.
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that in the weak limit

Pn,β ,r(Ln 2 dx) =)

8
<
:

δzβ
if β < βc(q,r)

1
q

q

∑
k=1

δu(β ,q,r)ek+(1�u(β ,q,r))zβ
if β > βc(q,r)

as n!∞, where u(β ,q,r) is the largest solution to the so-called mean-field equation

u =
1� exp(∆(u))

1+(q�1)exp(∆(u))

with ∆(u) := � β
qr�1

⇥
(1+(q� 1)u)r�1 � (1� u)r�1

⇤
. Moreover, for (q,r) 2 {2}⇥

[2,4], the function β 7! u(β ,q,r) is continuous whereas, in the complementary case,

the function is discontinuous at βc(q,r).

See Figure 9 for the case of q = 3 and r = 2.

13.4 Bipartite Potts model

Following the approach described in general at the start of this chapter, the equi-

librium phase structure of the bipartite Potts model will be defined by the large

deviation principle of Pn,n,β . As a corollary to the LDP (Sanov’s Theorem) for the

empirical measure Ln with rate function expressed as the relative entropy R(ν |ρ)
stated in the previous section, the 2q-dimensional empirical measure vector (Ln,Ln)
satisfies the large deviation principle with respect to the product measure Pn⇥Pn

over Pq ⇥Pq with rate function given by the sum of relative entropies, that is,

Pn⇥Pn((Ln,Ln) 2 dγ ⇥dν)⇡ e�n(R(γ|ρ)+R(ν |ρ)). (66)

Denote R((γ,ν)|ρ) = R(γ|ρ)+R(ν |ρ). Now, since (Ln,Ln) satisfies the large devi-

ation principle on Pq ⇥Pq with respect to Pn⇥Pn with rate function R((γ,ν)|ρ),
the Laplace principle implies the following lemma (see [21] and [43]), analogous to

Lemma 13.10 in the preceding section.

Lemma 13.13 Let ψ(β ) be the free energy defined in (45). Then

�βψ(β ) = sup
(γ,ν)2Pq⇥Pq

αβ (γ,ν), (67)

where

αβ (γ,ν) = β hγ,νi�R((γ,ν)|ρ) (68)

Next, applying Lemma 13.13, we obtain the following large deviation principle for

the Potts model on Kn,n.
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Theorem 13.14 The empirical vector pair (Ln,Ln) satisfies the large deviation

principle with respect to the Gibbs ensemble probability measure Pn,n,β , as defined

in (42), on Pq ⇥Pq with the rate function

Iβ (γ,ν) = R((γ,ν)|ρ)+βH(γ,ν)� inf
γ 0,ν 0

{R((γ 0,ν 0)|ρ)+βH(γ 0,ν 0)},

where H is the interaction representation function defined in (44).

The above theorem yields the following natural description of the equilibrium

macrostates (55) for the bipartite Potts model

Eβ =
�
(γ,ν) 2 Pq ⇥Pq : (γ,ν) maximizes αβ (γ,ν)

 
.

Remark 1. In Subsections 10.1 and 13.3, it is assumed that the interaction represen-

tation function H is concave in order to guarantee that the free energy functional Gβ

defined in (70) has a maximum. In the case of the bipartite model H(x,y) is bilinear,

yet this is still sufficient to guarantee the existence of a unique macrostate in the

single phase region.

We analyze the equilibrium macrostates Eβ by writing αβ (γ,ν) as follows

αβ (γ,ν) =

✓
β

2
hγ,γi�R(γ|ρ)

◆
+

✓
β

2
hν ,νi�R(ν |ρ)

◆
�

β

2
kγ �νk2, (69)

and arriving to the following lemma.

Lemma 13.15 The maximum of αβ (γ,ν) occurs on the identity line γ = ν .

Proof. Let E CWP
β denote the equilibrium macrostates (64) for the Curie-Weiss-Potts

model. Consider the function αβ (z) =
β
2
hz,zi�R(z|ρ) over the compact set Pq.

Then, as stated in (60), Theorem 13.8 implies

E
CWP
β =

�
γ 2 Pq : γ maximizes αβ (γ)

 
.

Now, for all z 2 E CWP
β , Theorem 2.1 in [27] implies that

αβ (γ,ν) αβ (z,z), for all (γ,ν) 2 Pq ⇥Pq.

Hence, the maximum of αβ (γ,ν) occurs on the identity line γ = ν .

By Lemma 13.15, in order to compute the equilibrium macrostates of the bipartite

Potts model we need to minimize the function �αβ (γ,ν) restricted to set {γ = ν}.

Thus

Eβ =

⇢
(γ,γ) 2 Pq ⇥Pq : γ minimizes R(γ|ρ)�

β

2
hγ,γi

�
,
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and the corresponding result describing the structure of the set Eβ for the bipartite

Potts model follows from Theorem 13.11.

Theorem 13.16 Fix a positive integer q � 3. Let βc = 2
q�1
q�2

log(q� 1), and let ν i

(i = 1,2, . . . ,q) be as defined in Theorem 13.11. Then

Eβ =

8
<
:

{(zβ ,zβ )} for 0 < β < βc,
{(ν1,ν1), . . . ,(νq,νq)} for β > βc,

{(zβ ,zβ ),(ν
1,ν1), . . . ,(νq,νq)} for β = βc

For all β � βc, the points in Eβ are all distinct. The point ν1(βc) equals ϕ(s(βc)) =
ϕ((q�2)/(q�1)).

As defined in Section 12, the behavior exhibited by the set of equilibrium

macrostates Eβ for the bipartite Potts model stated in Theorem 13.16 is referred to

as a first-order phase transition with respect to the parameter β . This is because as β
passes through the critical value βc from below, in the set of equilibrium macrostates

Eβ , a spontaneous emergence of additional distinct macrostates occurs.

The free energy functional for the canonical ensemble Pn,n,β is

Gβ (x,y) = β (�H)⇤(�∇H(x,y))�Γ (�β∇H(x,y)), (70)

where the logarithmic moment generating function of the individual spin Γ was

defined in (48), and (�H)⇤ is the Legendre-Fenchel transform of �H(x,y) = hx,yi,
computed here:

(�H)⇤(x,y) = sup(z,w)2Rq⇥Rq{h(z,w),(x,y)i+H(z,w)}

= sup(z,w)2Rq⇥Rq{hz,xi+ hw,yi�hz,wi}

= hx,yi.

Therefore, since ∇H(x,y) =�(y1, . . . ,yq,x1, . . . ,xq),

Gβ (x,y) = β (�H)⇤(�∇H(x,y))�Γ (�β∇H(x,y))
= β (�H)⇤(y,x)�Γ (βx,βy)

= β hx,yi� log

 
1
q

q

∑
i=1

eβxi

!
� log

 
1
q

q

∑
i=1

eβyi

!
.

Next, employing the identity 2hx,yi= kxk2 +kyk2 �kx� yk2, and defining

Gβ (x) =
β

2
hx,xi� log

 
1

q

q

∑
i=1

exp{βxi}

!
,

for all x 2 R
q, we rewrite the function Gβ (x,y) as follow

Gβ (x,y) = Gβ (x)+Gβ (y)�
β

2
kx� yk2. (71)
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Then, by Theorem A.1 in [12] (or a more general version stated in Lemma 13.10 )

we have that

sup
(x,y)2Pq⇥Pq

{αβ (x,y)}= inf
(x,y)2Rq⇥Rq

{Gβ (x,y)}.





Chapter 5

Path coupling for Curie-Weiss model

In Chapters 6-8, we describe the method of aggregate path coupling for one and

higher dimensional models. As previously discussed, the aggregate path coupling

method was initially derived to prove rapid mixing for models that exhibit first-order

phase transitions. To help put the aggregate path coupling method in context, we

begin in this chapter with an illustration of application of the standard path coupling

to the Curie-Weiss model.

Here, we will adapt the greedy coupling construction from Section 5 in Chapter 2

for the Curie-Weiss model. Define the path metric d on Λ n = {�1,1}n by

d(σ ,τ) =
n

∑
j=1

1{σ j 6=τ j} =
1

2

n

∑
j=1

��σ j � τ j

��. (72)

In this greedy coupling construction, conditioned on Xt = σ and Yt = τ , we sample

Xt+1 and Yt+1 as follows. First, we select a vertex Θ jointly for both copies of the

Markov chain. Next, conditioned on Θ = i, we simultaneously update the spin at

vertex i for both, Xt+1 and Yt+1, using the maximal coupling of probability measures

ν = qi,σ (1)δ1 +qi,σ (�1)δ�1

and

µ = qi,τ(1)δ1 +qi,τ(�1)δ�1.

The update probabilities qi,σ (1) and qi,σ (�1) were defined in (27) and (28).

Following the notions in Chapter 2, we let

dK(σ ,τ) := E[d(Xt+1,Yt+1) |Xt = σ ,Yt = τ]

denote the mean coupling distance.

Consider a pair of neighboring configurations σ and τ in Λ n = {�1,1}n. That is σ
and τ agree everywhere except at a single discrepancy vertex at j, where

59
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(
σi = τi if i 6= j,

σi 6= τi if i = j.

Here, by (27) and (28),

ν =
1+ tanh(β S̃(σ , i)/n)

2
δ1 +

1� tanh(β S̃(σ , i)/n)

2
δ�1

and

µ =
1+ tanh(β S̃(τ, i)/n)

2
δ1 +

1� tanh(β S̃(τ, i)/n)

2
δ�1.

Thus, the spin at vertex i updates to the same value with probability

1�kν �µkTV =

(
1 if i = j,

1� 1
2

�� tanh(β S̃(σ , i)/n)� tanh(β S̃(τ, i)/n)
�� if i 6= j.

If i 6= j, then ��S̃(σ , i)� S̃(τ, i)
��= |σ j � τ j|= 2,

and by the mean value theorem,

1

2

�� tanh(β S̃(σ , i)/n)� tanh(β S̃(τ, i)/n)
��= 1

n

d

dx
tanh(βx)

���
x=c

=
β

n
sech2(βc)

for some value c between S̃(σ , i)/n and S̃(τ, i)/n. Note that sech(x) 1 for all x2R,

and therefore
β
n

sech2(βc) β
n

. Therefore,

dK(σ ,τ) = E[d(Xt+1,Yt+1) |Xt = σ ,Yt = τ]



✓
1�

β

n
+2

β

n

◆
P(Θ 6= j)

=

✓
1+

β

n

◆
n�1

n

 (1�δ (n))d(σ ,τ),

where δ (n) = 1�β
n

and d(σ ,τ) = 1. Thus, if β < 1, the contraction condition (17) is

satisfied for this greedy coupling. Also, dK(·, ·) is a pseudometric on Λ n by Lemma

6.1. Hence, by Theorem 6.2,

tmix(ε)

⇠
logn� logε

δ (Ω)

⇡
=

1

1�β
n logn+O(n)

whenever β < 1. Importantly, the standard bottleneck ratio argument using the

Cheeger constant proves slow mixing for β > 1. Observe that here, the interface

between fast and slow mixing behaviors matches the phase transition at β = 1 ob-

served in Theorem 13.2.



Chapter 6

Aggregate path coupling: one dimensional
theory

In this chapter, we illustrate the aggregate path coupling method for models with one

dimensional macroscopic quantities. The model chosen is the mean-field Blume-

Capel model where the relevant macroscopic quantity is the one-dimensional mag-

netization Sn/n. The mean-field Blume-Capel model is ideally suited for the analy-

sis of the relationship between the thermodynamic equilibrium behavior and mixing

times due to its intricate phase transition structure. Specifically, as discussed in Sub-

section 13.2, the phase diagram of the model includes a curve at which the model

undergoes a continuous phase transition, a curve where the model undergoes a first-

order phase transition, and a tricritical point which separates the two curves.

14 Path coupling

We begin by setting up the coupling rules for the Glauber dynamics of the mean-

field Blume-Capel model. Define the path metric d on Λ n = {�1,0,1}n by

d(σ ,τ) =
n

∑
j=1

��σ j � τ j

��. (73)

Remark 1. In the original paper [34] on the mixing times of the mean-field Blume-

Capel model, the incorrect path metric was used. In that paper, the path metric

ρ(σ ,τ) = ∑
n
j=1 1{σ j 6=τ j}. With the correct metric defined in (73), the proofs in [34]

remain valid.

Consider the greedy coupling construction from Section 5 in Chapter 2 adapted to

the mean-field Blume-Capel model. There, conditioned on Xt = σ and Yt = τ , we

sample Xt+1 and Yt+1 as follows. First, we select a vertex Θ jointly for both copies

of the Markov chain. Next, conditioned on Θ = i, we simultaneously update the

spin at vertex i for both, Xt+1 and Yt+1, using the maximal coupling of probability

measures

61
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ν = qi,σ (1)δ1 +qi,σ (0)δ0 +qi,σ (�1)δ�1

and

µ = qi,τ(1)δ1 +qi,τ(0)δ0 +qi,τ(�1)δ�1.

The update probabilities qi,σ (1), qi,σ (0), and qi,σ (�1) were defined in (31), (32),

and (33).

Once again, we let

dK(σ ,τ) := E[d(Xt+1,Yt+1) |Xt = σ ,Yt = τ]

denote the mean coupling distance.

Consider a pair of neighboring configurations σ and τ in Λ n = {�1,0,1}n, i.e.

(
σi = τi if i 6= j,

σi 6= τi if i = j.

Here, by (73), d(σ ,τ) = |σ j � τ j| is either equal to 1 or 2.

Conditioned on Θ = i, the spin at vertex i updates to the same value with probability

1�kν � µkTV. Thus, if i = j, then Xt+1 = Yt+1.If i 6= j, then |S̃(σ , i)� S̃(τ, i)| =
|σ j � τ j|. We assume without loss of generality that

|S̃(σ , i)|� |S̃(τ, i)|, (74)

and let S = sgn
�
S̃(σ , i)

�
. Then S =±1 and

e2βK|S̃(σ ,i)|/n

2cosh
⇣

2βK
n

S̃(σ , i)
⌘
+ eβ�(βK)/n

>
e2βK|S̃(τ,i)|/n

2cosh
⇣

2βK
n

S̃(τ, i)
⌘
+ eβ�(βK)/n

.

Therefore, by (31), the above rewrites as

qi,σ (S)> qi,τ(S).

Similarly, by (32) and (33),

qi,σ (0)< qi,τ(0) and qi,σ (�S)< qi,τ(�S).

Thus, the spin at vertex i is updated to the following:

• The same value with probability 1�kν �µkTV = 1� (qi,σ (S)�qi,τ(S));
• The values S and 0 in Xt+1 and Yt+1 respectively with probability

qi,τ(0)�qi,σ (0);

• The values S and �S in Xt+1 and Yt+1 respectively with probability
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qi,τ(�S)�qi,σ (�S).

Therefore, if i 6= j and assuming condition (74), we have

E[d(Xt+1,Yt+1) |Xt = σ ,Yt = τ,Θ = i] =d(σ ,τ)+
�
qi,τ(0)�qi,σ (0)

�

+2
�
qi,τ(�S)�qi,σ (�S)

�

=d(σ ,τ)+
�
qi,σ (S)�qi,σ (�S)

�

�
�
qi,τ(S)�qi,τ(�S)

�
(75)

as qi,ω(0)+qi,ω(�S) = 1�qi,ω(S) for all ω 2 Λ n. Define

ϕβ ,K(x) =
2sinh( 2βK

n
x)

2cosh( 2βK
n

x)+ eβ� βK
n

. (76)

Then, by (31-33) and (75),

E[d(Xt+1,Yt+1) |Xt = σ ,Yt = τ,Θ = i] = d(σ ,τ)+ϕβ ,K(|S̃(σ , i)|)�ϕβ ,K(|S̃(τ, i)|)

= d(σ ,τ)+ϕβ ,K(|Sn(σ)|)�ϕβ ,K(|Sn(τ)|)+O

✓
1

n2

◆
(77)

as S̃(σ , i)� S̃(τ, i) = Sn(σ)� Sn(τ) and σ and τ are neighbor configurations, thus

resulting in a second order error term. Thus, summing up the terms in (77) over all

i 6= j, we have

dK(σ ,τ) =
⇣

d(σ ,τ)+ϕβ ,K(|Sn(σ)|)�ϕβ ,K(|Sn(τ)|)
⌘n�1

n
+O

✓
1

n2

◆
.

Finally, removing condition (74), we obtain the following result.

Lemma 14.1 Let d be the path metric defined in (82) and (Xt ,Yt) be the greedy

coupling of the Glauber dynamics of the mean-field Blume-Capel model. Then for

any pair of neighboring configurations σ and τ in Λ n,

dK(σ ,τ) =
⇣

d(σ ,τ)+
���ϕβ ,K(Sn(σ))�ϕβ ,K(Sn(τ))

���
⌘n�1

n
+O

✓
1

n2

◆
.

Next, we observe that differentiating cβ defined in (56), we have

c0β (t) =
2sinh(t)

2cosh(t)+ eβ
,

and therefore, for any pair of neighboring configurations σ and τ ,

ϕβ ,K(Sn(σ))�ϕβ ,K(Sn(τ)) = c0β

✓
2βK

Sn(τ)

n

◆
� c0β

✓
2βK

Sn(σ)

n

◆
+O

✓
1

n2

◆
.
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This yields the following corollary.

Corollary 14.2 For any pair of neighboring configurations σ and τ in Λ n,

dK(σ ,τ) =

✓
d(σ ,τ)+

����c
0
β

✓
2βK

Sn(τ)

n

◆
� c0β

✓
2βK

Sn(σ)

n

◆����
◆

n�1

n
+O

✓
1

n2

◆
.

By the above corollary, we conclude that the mean coupling distance dK(σ ,τ) of a

coupling starting in neighboring configurations σ and τ contracts if and only if

1

n�1
d(σ ,τ)>

����c
0
β

✓
2βK

Sn(τ)

n

◆
� c0β

✓
2βK

Sn(σ)

n

◆����

⇡
2βK

n
c00β

✓
2βK

Sn(σ)

n

◆
|Sn(τ)�Sn(σ)|

=
2βK

n
c00β

✓
2βK

Sn(σ)

n

◆
d(σ ,τ)

As we let n go to infinity, this is equivalent to

c00β

✓
2βK

Sn(σ)

n

◆
<

1

2βK
(78)

Therefore, contraction of the mean coupling distance, and thus rapid mixing, de-

pends on the concavity behavior of the function c0β . This is also precisely what de-

termines the type of thermodynamic equilibrium phase transition (continuous versus

first-order) that is exhibited by the mean-field Blume-Capel model. We state the con-

cavity behavior of c0β in the next theorem which is proved in Theorem 3.5 in [26].

The results of the theorem are depicted in Figure 10

Theorem 14.3 For β > βc = log4 define

wc(β ) = cosh�1

✓
1

2
eβ �4e�β

◆
� 0. (79)

The following conclusions hold.

(a) For 0 < β  βc, c0β (w) is strictly concave for w > 0.

(b) For β > βc, c0β (w) is strictly convex for 0 < w < wc(β ) and c0β (w) is strictly

concave for w > wc(β ).

By part (a) of the above theorem, for β  βc, c00β (x)  c00β (0) = 1/(2βK
(2)
c (β )).

Therefore, by (78), the mean coupling distance contracts between all pairs of neigh-

boring states whenever K < K
(2)
c (β ).

By contrast, for β > βc, we will show that rapid mixing occurs whenever K <K1(β )
where K1(β ) is the metastable critical value introduced in subsection 13.2 and de-

picted in Figure 7. However, since the supremum sup[�1,1] c
00
β (x) >

1
2βK1(β )

, the
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K
c
(β)(2)

β < βc
β > βc_

Fig. 10 Behavior of c0β (w) for large and small β .

condition K < K1(β ) is not sufficient for (78) to hold. That is, K < K1(β ) does

not imply the contraction of the mean coupling distance between all pairs of neigh-

boring states. However, we prove rapid mixing for all K < K1(β ) in section 16 by

using an extension to the path coupling method that we refer to as aggregate path

coupling.

We now prove the mixing times for the mean-field Blume-Capel model, which

varies depending on the parameter values (β ,K) and their position with respect

to the thermodynamic phase transition curves. We begin with the case β  βc where

the model undergoes a continuous phase transition and K  K
(2)
c (β ) which corre-

sponds to the single phase region.

15 Standard path coupling in the continuous phase transition

region

In this section, we assume β  βc which implies that the BC model undergoes a

continuous phase transition at K = K
(2)
c (β ) defined in (59). By Theorem 14.3, for

β  βc, c0β (x) is concave for x > 0. See the first graph of Figure 10 as reference. We

next state and prove the rapid mixing result for the mean-field Blume-Capel model

in the continuous phase transition regime.

Theorem 15.1 Let tmix(ε) be the mixing time for the Glauber dynamics of the mean-

field Blume-Capel model on n vertices and K
(2)
c (β ) the continuous phase transition
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curve defined in (59). Then for β  βc = log4 and K < K
(2)
c (β ),

tmix(ε)
n

α
(logn+ log(1/ε))

for any α 2

✓
0, K

(2)
c (β )�K

K
(2)
c (β )

◆
and n sufficiently large.

Proof. Consider a pair of neighboring configurations σ and τ . By Corollary 14.2 of

Lemma 14.1,

dK(σ ,τ) = 1�

✓
1

n
�

(n�1)

n

����c
0
β

✓
2βK

Sn(τ)

n

◆
� c0β

✓
2βK

Sn(σ)

n

◆����
◆
+O

✓
1

n2

◆

Observe that c00β is an even function and that for β  βc, sup
x

c00β (x) = c00β (0). There-

fore, by the mean value theorem and Theorem 13.5,

dK(σ ,τ)  1�
[1� (n�1)(2βK/n)c00β (0)]

n
+O

✓
1

n2

◆

 exp

(
�

1�2βKc00β (0)

n
+O

✓
1

n2

◆)

= exp

(
1

n

 
K
(2)
c (β )�K

K
(2)
c (β )

!
+O

✓
1

n2

◆)

< e�α/n

for any α 2

✓
0, K

(2)
c (β )�K

K
(2)
c (β )

◆
and n sufficiently large. Thus, for K < K

(2)
c (β ), we can

apply Theorem 6.2, where the diameter of the configuration space of the BC model

Λ n is n, to complete the proof.

16 Aggregate path coupling in the first-order phase transition

region

Here we consider the region β > βc, where the mean-field Blume-Capel model un-

dergoes a first-order phase transition. In this region, the function c0β (x) which deter-

mines whether the mean coupling distance contracts (Corollary 14.2) is no longer

strictly concave for x > 0 (Theorem 14.3). See the second graph in Figure 10 for ref-

erence. We will show that rapid mixing occurs whenever K < K1(β ) where K1(β )
is the metastable critical value defined in subsection 13.2 and depicted in Figure 7.
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As shown in Section 14, in order to apply the standard path coupling technique of

Theorem 6.2, we need the inequality (78) to hold for all values of Sn(σ) and thus

sup[�1,1] c
00
β (x)<

1
2βK

. However since sup[�1,1] c
00
β (x)>

1
2βK1(β )

, the condition K <

K1(β ) is not sufficient for the contraction of the mean coupling distance between

all pairs of neighboring states which is required to prove rapid mixing using the

standard path coupling technique stated in Theorem 6.2.

In order to prove rapid mixing in the region where β > βc and K < K1(β ), we

take advantage of the result in Theorem 13.7 which states the weak convergence

of the magnetization Sn/n to a point-mass at the origin. Thus, in the coupling of

the dynamics, the magnetization of the process that starts at equilibrium will stay

mainly near the origin. As a result, for two starting configurations σ and τ , one

of which has near-zero magnetization (Sn(σ)/n ⇡ 0), the mean coupling distance

of a coupling starting in these configurations will be the aggregate of the mean

coupling distances between neighboring states along a minimal path connecting the

two configurations. Although not all pairs of neighbors in the path will contract, we

show that in the aggregate, contraction between the two configurations still holds.

In the next lemma we prove contraction of the mean coupling distance in the ag-

gregate and then the rapid mixing result for the mean-field Blume-Capel model is

proved in the theorem following the lemma by applying the new aggregate path

coupling method.

Lemma 16.1 Let (X ,Y ) be a coupling of one step of the Glauber dynamics of the

BC model that begin in configurations σ and τ , not necessarily neighbors with re-

spect to the path metric d defined in (82). Suppose β > βc and K < K1(β ). Then for

any α 2
⇣

0, K1(β )�K

K1(β )

⌘
there exists an ε > 0 such that, asymptotically as n ! ∞,

dK(σ ,τ) e�α/nd(σ ,τ) (80)

whenever |Sn(σ)|< εn.

Proof. Observe that for β > βc and K < K1(β ),

|c0β (x)|
|x|

2βK1(β )
for all x

We will show that for a given α 0 2
⇣

1
2βK1(β )

, 1�α
2βK

⌘
, there exists ε > 0 such that

|c0β (x)� c0β (x0)| α 0|x� x0| whenever |x0|< ε (81)

as c0β (x) is a continuously differentiable increasing odd function and c0β (0) = 0.
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In order to show (81), observe that c00β (0) =
1

2βK
(2)
c (β )

< 1
2βK1(β )

, and since c00β is

continuous, there exists a δ > 0 such that

c00β (x)< α 0 whenever |x|< δ

The mean value theorem implies that

|c0β (x)� c0β (x0)|< α 0|x� x0| for all x0,x 2 (�δ ,δ )

Now, let ε = α 0�1/(2βK1(β ))
α 0+1/(2βK1(β ))

δ < δ . Then for any |x0|< ε and |x|� δ ,

|c0β (x)� c0β (x0)|
|x|+ |x0|

2βK1(β )


(1+ ε/δ )|x|

2βK1(β )

=
|x� x0|

2βK1(β )
·

1+ ε/δ

|1� x0/x|


|x� x0|

2βK1(β )
·

1+ ε/δ

1� ε/δ

= α 0|x� x0|.

Let π : σ = x0,x1, . . . ,xr = τ be a path in Λ n connecting σ to τ such that

• π is a monotone path with respect to metric d, i.e.

r

∑
i=1

d(xi�1,xi) = d(σ ,τ);

• Pairs (xi�1,xi) are neighboring configurations.

Then by Lemma 6.1, Corollary 14.2 of Lemma 14.1, and (81), we have asymptoti-

cally as n ! ∞ for |Sn(σ)|< εn,

dK(σ ,τ)
r

∑
i=1

dK(xi�1,xi)

=
(n�1)

n
d(σ ,τ)+

(n�1)

n

����c
0
β

✓
2βK

n
Sn(σ)

◆
� c0β

✓
2βK

n
Sn(τ)

◆����

+d(σ ,τ) ·O

✓
1

n2

◆


(n�1)

n
d(σ ,τ)+

(n�1)

n
|Sn(σ)�Sn(τ)|

2βKα 0

n
+d(σ ,τ) ·O

✓
1

n2

◆

d(σ ,τ)


1�

✓
1�2βKα 0

n

◆
+O

✓
1

n2

◆�
 e�α/nd(σ ,τ)

as |Sn(σ)�Sn(τ)|= d(σ ,τ). This completes the proof.
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Theorem 16.2 Let tmix(ε) be the mixing time for the Glauber dynamics of the mean-

field Blume-Capel model on n vertices and K1(β ) be the metastable critical point.

Then, for β > βc and K < K1(β ),

tmix(ε)
n

α
(logn+ log(2/ε))

for any α 2
⇣

0, K1(β )�K

K1(β )

⌘
and n sufficiently large.

Proof. For all sufficiently small ε > 0 and for all n large enough, let

Aε,n = {σ 2 Λ n : |Sn(σ)| εn}.

Then, for a given α 2
⇣

0, K1(β )�K

K1(β )

⌘
, Lemma 16.1 implies the aggregate contraction

(23) in Theorem 8.1.

Recall that Pn,β ,K is the stationary distribution for the Glauber dynamics. For β > βc

and K < K1(β ), Theorem 13.7 states the weak convergence

Pn,β ,K(Sn/n 2 dx) =) δ0 as n ! ∞.

Moreover, for any γ > 1 and n sufficiently large, the LDP Theorem 13.4 implies that

the stationary probability of the complement Ac
ε,n of Aε,n is bounded above by

Pn,β ,K(A
c
ε,n) = Pn,β ,K(|Sn/n|� ε) e

� n
γ Iβ ,K(ε).

Therefore, we have established the concentration inequality (24) in Theorem 8.1

with ζ (n) = e
n
γ Iβ ,K(ε). Hence, by Theorem 8.1,

kPt(X0, ·)�Pn,β ,KkTV  n
⇣

e�αt/n + te
� n

γ Iβ ,K(ε)
⌘
,

where for t = n
α (logn+ log(2/ε)), the above right-hand side converges to ε/2 as

n ! ∞.

17 Slow mixing

In [34], the slow mixing region of the parameter space was determined for the mean-

field Blume-Capel model. Since the method used to prove the slow mixing, called

the bottleneck ratio or Cheeger constant method, is not a coupling method, we sim-

ply state the result for completeness.

Theorem 17.1 For (a) β  βc and K > K
(2)
c (β ), and (b) β > βc and K > K1(β ),

there exists a positive constant b and a strictly positive function r(β ,K) such that

for the Glauber dynamics of the mean-field Blume-Capel model on n vertices,
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Fig. 11 Mixing times and equilibrium phase transition structure of the mean-field Blume-Capel

model

tmix(ε)� ber(β ,K)n.

We summarize the mixing time results for the mean-field Blume-Capel model and

its relationship to the model’s thermodynamic phase transition structure in Figure

11. As shown in the figure, in the continuous phase transition region (β  βc) for

the BC model, the mixing time transition coincides with the equilibrium phase tran-

sition. This is consistent with other models that exhibit this type of phase transition.

However, in the first-order phase transition region (β > βc) the mixing time transi-

tion occurs below the equilibrium phase transition at the metastable critical value.



Chapter 7

Aggregate path coupling: higher dimensional
theory

In this chapter, we extend the aggregate path coupling technique derived in the pre-

vious section for the Blume-Capel model to a large class of statistical mechani-

cal models that is disjoint from the mean-field Blume-Capel model. The aggregate

path coupling method presented here extends the classical path coupling method

for Gibbs ensembles in two directions. First, we consider macroscopic quantities in

higher dimensions and find a monotone contraction path by considering a related

variational problem in the continuous space. We also do not require the monotone

path to be a nearest-neighbor path. In fact, in most situations we consider, a nearest-

neighbor path will not work for proving contraction. Second, the aggregation of the

mean path distance along a monotone path is shown to contract for some but not

all pairs of configurations. Yet, we use measure concentration and large deviation

principle to show that proving contraction for pairs of configurations, where at least

one of them is close enough to the equilibrium, is sufficient for establishing rapid

mixing.

Our main result is general enough to be applied to statistical mechanical mod-

els that undergo both types of phase transitions and to models whose macroscopic

quantity are in higher dimensions. Moreover, despite the generality, the application

of our results requires straightforward conditions that we illustrate in Section 21.

This is a significant simplification for proving rapid mixing for statistical mechan-

ical models, especially those that undergo first-order phase transitions. Lastly, our

results also provide a link between measure concentration of the stationary distri-

bution and rapid mixing of the corresponding dynamics for this class of statistical

mechanical models. This idea has been previously studied in [41] where the main

result showed that rapid mixing implied measure concentration defined in terms of

Lipschitz functions. In our work, we prove a type of converse where measure con-

centration, in terms of a large deviation principle, implies rapid mixing.

71
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18 Coupling of Glauber dynamics

We begin by defining a metric on the configuration space Λ n. For two configurations

σ and τ in Λ n, define

d(σ ,τ) =
n

∑
j=1

1{σ j 6=τ j} (82)

which yields the number of vertices at which the two configurations differ.

Let (Xt ,Yt) be a greedy coupling of two copies of the Glauber dynamics. Suppose

Xt = σ , Yt = τ . Then (Xt+1,Yt+1) is sampled as follows. At each time step a vertex

is selected at random uniformly from the n vertices with the choice variable Θ . We

condition on the vertex selection Θ = i. Next, we erase the spin at location i in both

processes, and replace it with a new one according to the maximal coupling of the

following probability measures

ν =
q

∑
k=1

qi,σ (e
k)δek and µ =

q

∑
k=1

qi,τ(e
k)δek

as constructed in Section 3 of Chapter 2. The update probabilities qi,σ were defined

in (37 ).

Finally, applying the notions introduced in Chapter 2, we let

dK(σ ,τ) := E[d(Xt+1,Yt+1) |Xt = σ ,Yt = τ]

denote the mean coupling distance.

19 Bounding mean coupling distance

We observe that by Corollary 10.2 of Lemma 10.1,

kqv,σ �qv,τkTV =
1

2

q

∑
k=1

���qv,σ (e
k)�qv,τ(e

k)
���

=
1

2

q

∑
k=1

���gH,β
k (Ln(σ))�g

H,β
k (Ln(τ))

���+O

✓
1

n

◆
.

Thus, for ε > 0 small enough there is a constant c > 0 such that for any pair of

configurations σ and τ satisfying

ε  kLn(σ)�Ln(τ)k1 < 2ε,

and any v 2 {1, . . . ,n},
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����� kqv,σ �qv,τkTV �
1

2

q

∑
k=1

���
D

Ln(τ)�Ln(σ),∇g
H,β
k (Ln(σ))

E���
�����< cε2. (83)

This is true for any C 2 function f : P ! R, there exists C > 0 such that

��� f (z0)� f (z)�
D

z0� z,∇ f (z)
E ���<Cε2 (84)

for all z,z0 2 P satisfying ε  kz0� zk1 < 2ε .

We next derive a formula for the mean coupling distance of a coupling starting

in two configurations that are connected by a path of configurations with a bounded

distance between the magnetizations of successive configurations.

Definition 19.1 Let σ and τ be configurations in Λ n. We say that a path π connect-

ing configurations σ and τ denoted by

π : σ = x0,x1, . . . ,xr = τ,

is a monotone path if

(i)
r

∑
i=1

d(xi�1,xi) = d(σ ,τ)

(ii) for each k = 1,2, . . . ,q, the kth coordinate of Ln(xi), namely Ln,k(xi) is mono-

tonic as i increases from 0 to r;

Observe that here the points xi on the path are not required to be nearest-neighbors.

A straightforward property of monotone paths is that

r

∑
i=1

q

∑
k=1

Ln,k(xi)�Ln,k(xi�1) = Ln(σ)�Ln(τ)

Another straightforward observation is that for any given path

Ln(σ) = z0,z1, . . . ,zr = Ln(τ)

in Pn, monotone in each coordinate, with kzi � zi�1k1 > 0 for all i 2 {1,2, . . . ,r},

there exists a monotone path

π : σ = x0,x1, . . . ,xr = τ

such that Ln(xi) = zi for each i.

Given configurations σ and τ in Λ n. By equation (37), there exists κ � 0 such that

kqv,σ �qv,τkTV = κ +O

✓
1

n

◆
for all v 2 {1, . . . ,n}.

Then,
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dK(σ ,τ)  d(σ ,τ)�
d(σ ,τ)

n
(1�κ)+

n�d(σ ,τ)

n
κ +O

✓
1

n

◆

= d(σ ,τ) ·

"
1�

1

n

 
1�

κ +O
�

1
n

�

d(σ ,τ)/n

!#
. (85)

Given ε > 0. Suppose kLn(σ)�Ln(τ)k1 � ε , and let π : σ = x0,x1, . . . ,xr = τ be

a monotone path connecting configurations σ and τ such that

ε  kLn(xi)�Ln(xi�1)k1 < 2ε

for all i = 1, . . . ,r. Then, by equation (83),

kqv,σ �qv,τkTV 
r

∑
i=1

kqv,xi
�qv,xi�1

kTV (86)


1

2

q

∑
k=1

r

∑
i=1

���
D

Ln(xi)�Ln(xi�1),∇g
H,β
k (Ln(xi�1))

E���+ cε.

Putting together equations (85) and (86), we obtain the following bound on the mean

distance between a coupling of the Glauber dynamics starting in configurations σ
and τ:

dK(σ ,τ) d(σ ,τ)

2
6641�

1

n

0
BB@1�

q

∑
k=1

r

∑
i=1

���
D

Ln(xi)�Ln(xi�1),∇g
H,β
k (Ln(xi�1))

E���+ cε +O
�

1
n

�

2d(σ ,τ)/n

1
CCA

3
775

 d(σ ,τ)

2
6641�

1

n

0
BB@1�

q

∑
k=1

r

∑
i=1

���
D

Ln(xi)�Ln(xi�1),∇g
H,β
k (Ln(xi�1))

E���+ cε +O
�

1
n

�

kLn(σ)�Ln(τ)k1

1
CCA

3
775 .

(87)

Observe from the inequality (87) that if there exists a monotone paths between all

pairs of configurations such that there is a uniform bound less than 1 on the ratio

∑
q
k=1 ∑

r
i=1

���
D

Ln(xi)�Ln(xi�1),∇g
H,β
k (Ln(xi�1))

E���
kLn(σ)�Ln(τ)k1

,

then the mean coupling distance will contract, yielding a bound on the mixing time

via the coupling inequality in Corollary 1.5.

Although the Gibbs measure are distributions of the empirical measure Ln de-

fined on the discrete space Pn, proving contraction of the mean coupling distance

is often facilitated by working in the continuous space, namely the simplex P . We
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begin our discussion of aggregate path coupling by defining distances along paths

in P .

Recall the function gH,β defined in (41) which is dependent on the Hamiltonian

of the model through the interaction representation function H(z).

Definition 19.2 Define the aggregate g-variation between a pair of points x and z

in P along a continuous monotone (in each coordinate) path ρ to be

D
g
ρ(x,z) :=

q

∑
k=1

Z

ρ

���
D

∇g
H,β
k (y),dy

E���

Define the corresponding pseudodistance between a pair of points points x and z in

P as

dg(x,z) := inf
ρ

D
g
ρ(x,z),

where the infimum is taken over all continuous monotone paths in P connecting x

and z.

Note that if the monotonicity restriction is removed, the above infimum would sat-

isfy the triangle inequality. We will need the following assumptions.

Property 1 Let zβ be the unique equilibrium macrostate. There exists δ 2 (0,1)
such that

dg(z,zβ )

kz� zβk1
 1�δ

for all z in P .

Observe that if it is shown that dg(z,zβ ) < kz� zβk1 for all z in P , then by conti-

nuity the above assumption is equivalent to

limsup
z!zβ

dg(z,zβ )

kz� zβk1
< 1

The following result is a straight forward approximation of a continuous monotone

function by a smooth monotone function.

Lemma 19.3 Suppose Property 1 is satisfied. Then there exists a family NGδ of

smooth curves, monotone in each coordinate such that for each z 6= zβ in P , there

is a curve ρ in the family NGδ connecting zβ to z, and

D
g
ρ(z,zβ )

kz� zβk1
 1�δ/2.

Such family of smooth curves will be referred to as neo-geodesic.

Suppose Property 1 is satisfied. Then, for any z, there is a curve ρ connecting zβ to

z such that
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kgH,β (z)�gH,β (zβ )k1

kz� zβk1
=

q

∑
k=1

���
R
ρ

D
∇g

H,β
k (y),dy

E���

kz� zβk1


D
g
ρ(z,zβ )

kz� zβk1
 1�δ/2.

Hence,

limsup
z!zβ

kgH,β (z)�gH,β (zβ )k1

kz� zβk1
< 1. (88)

Since H(z) 2 C 3, the above equation (88) implies that for ε > 0 sufficiently small,

there exists γ 2 (0,1) such that

kgH,β (z)�gH,β (w)k1

kz�wk1
< 1� γ (89)

for all z and w in P satisfying

kz� zβk1 < ε and kw� zβk1 < ε.

Once Property 1 is established, the following stronger property may be considered.

Property 2 Assume Property 1 is satisfied. There exists a neo-geodesic family NGδ

and a scalar Cκ > 0 such that for every curve ρ in the family NGδ , the curvature

is bounded above by Cκ .

For sufficiently large n, the bound on the curvature allows approximation of any ρ
in NGδ with a discrete monotone path

π : z0,z1, . . . ,zr

on Pn with steps ε  kzi � zi�1k1 < 2ε such that

q

∑
k=1

r

∑
i=1

���
D

zi � zi�1,∇g
H,β
k (zi�1)

E���

kz�wk1
⇡

D
g
ρ(z,zβ )

kz� zβk1
.

20 Aggregate path coupling

A major strength of the aggregate path coupling method is that it yields a proof for

rapid mixing even in those cases when contraction of the mean coupling distance

between all pairs of neighboring configurations does not hold. Here we will take

advantage of the large deviations estimates discussed in Subsection 13.3. Recall

interval B defined following (60). Assume that β 2 B, and the set of equilibrium

macrostates Eβ , which can be expressed in the form given in (63), consists of a single
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point zβ . In order to use Theorem 8.1, we need to first establish contraction of the

mean coupling distance between two copies of a Markov chain, where the Ln value

of one of the coupled dynamics starts near an equilibrium. Then, this contraction,

along with the large deviations estimates of the empirical measure Ln, will yield

rapid mixing of the Glauber dynamics converging to the Gibbs measure.

Observe that we only need to show contraction along one monotone path con-

necting two configurations in order to have the mean coupling distance dK(σ ,τ)
contract in a single time step. However, finding even one monotone path with which

we can show contraction in the equation (87) is not easy. The answer to this is in

finding a monotone path ρ in P connecting the Ln values of the two configurations,

σ and τ , such that
q

∑
k=1

R
ρ

���
D

∇g
H,β
k (y),dy

E���

kLn(σ)�Ln(τ)k1
< 1

Although ρ is a continuous path in continuous space P , it is used for finding a

monotone path

π : σ = x0, x1, . . . ,xr = τ

such that Ln(x0), Ln(x1), . . . ,Ln(xr) in Pn are positioned along ρ , and

q

∑
k=1

r

∑
i=1

���
D

Ln(xi)�Ln(xi�1),∇g
H,β
k (Ln(xi�1))

E���

is a Riemann sum approximating
q

∑
k=1

R
ρ

���
D

∇g
H,β
k (y),dy

E���. Therefore we obtain

q

∑
k=1

r

∑
i=1

���
D

Ln(xi)�Ln(xi�1),∇g
H,β
k (Ln(xi�1))

E���

kLn(σ)�Ln(τ)k1
< 1,

that in turn implies contraction in (87) for ε small enough and n large enough. See

Figure 12.

Observe that in order for the above argument to work, we need to spread points

Ln(xi) 2 Pn along a continuous path ρ at intervals of fixed order ε . Thus π has to

be not a nearest-neighbor path in the space of configurations, another significant

deviation from the classical path coupling.

Lemma 20.1 Suppose Propertiy 2 holds. Let (Xt ,Yt) be a greedy coupling of the

Glauber dynamics. Let zβ be the single equilibrium macrostate of the corresponding

Gibbs ensemble. Then there exists an α > 0 and an ε 0 > 0 small enough such that

for n large enough,

dK(σ ,τ) e�α/nd(σ ,τ)

whenever kLn(σ)� zβk1 < ε 0.

Proof. Let δ be as in Properties 1 and 2. Take ε > 0 and ε 0 > 0.
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dK(σ ,τ)  d(σ ,τ)

2
6641�

1

n

0
BB@1�

q

∑
k=1

r

∑
i=1

���
D

Ln(xi)�Ln(xi�1),∇g
H,β
k (Ln(xi�1))

E���+ cε +O
�

1
n

�

kLn(σ)�Ln(τ)k1

1
CCA

3
775

 d(σ ,τ)


1�

1

n

�
1� (1�δ/3)�δ/12

��

= d(σ ,τ)


1�

1

n
δ/4

�

as 1
n

cε+O( 1
n )

kLn(σ)�Ln(τ)k1
 δ/12 for ε small enough and n large enough.

Case II. Let ε and ε 0 be as in Case I. Suppose Ln(τ) = z and Ln(σ) = w, where

kz� zβk1 < ε + ε 0 and kw� zβk1 < ε 0.

Similarly to (85), equation (83) implies for n large enough,

dK(σ ,τ)  d(σ ,τ) ·

"
1�

1

n

 
1�

kgH,β
�
Ln(σ)

�
�gH,β

�
Ln(τ)

�
k1

kLn(σ)�Ln(τ)k1

!#
+O

✓
1

n2

◆

 d(σ ,τ) ·
h
1�

γ

n

i
+O

✓
1

n2

◆

 d(σ ,τ) ·
h
1�

γ

2n

i

by (88).

We now state and prove the main theorem of the paper that yields sufficient con-

ditions for rapid mixing of the Glauber dynamics of the class of statistical mechan-

ical models discussed. Recall the interval B in the parameter space is such that for

all β 2 B, Eβ = {zβ}.

Theorem 20.2 Suppose H(z) and β 2 B are such that Property 2 is satisfied. Then

the mixing time of the Glauber dynamics satisfies

tmix(ε) = O(n logn)

Proof. For all sufficiently small ε 0 > 0 and for all n large enough, let

Aε 0,n = {σ 2 Λ n : kLn(σ)� zβk1 < ε 0}.

Then, Lemma 20.1 implies the existence of α > 0 for which the aggregate contrac-

tion condition (23) in Theorem 8.1 is satisfied when ε 0 is sufficiently small and n is

sufficiently large.

Recall the LDP limit (61) for β in the single phase region B,

Pn,β (Ln(X0) 2 dx) =) δzβ
as n ! ∞.
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Moreover, for any γ 0 > 1 and n sufficiently large, the LDP upper bound (53) implies

that the stationary probability of the complement Ac
ε 0,n of Aε 0,n is bounded above by

Pn,β ,(A
c
ε 0,n) e

� n
γ 0

Iβ (ε
0)
.

Therefore, we have established the concentration inequality (24) in Theorem 8.1

with ζ (n) = e
n
γ 0

Iβ (ε
0)

. Hence, by Theorem 8.1,

kPt(X0, ·)�Pn,βkTV  n
⇣

e�αt/n + te
� n

γ 0
Iβ (ε

0)
⌘
,

where for t = n
α (logn+ log(2/ε 0)), the above right-hand side converges to ε 0/2 as

n ! ∞.

21 Aggregate path coupling applied to the generalized Potts

model

In this section, we illustrate the strength of our main result of Section 7, Theorem

20.2, by applying it to the generalized Curie-Weiss-Potts model (GCWP), studied

recently in [33]. The classical Curie-Weiss-Potts (CWP) model, which is the mean-

field version of the well known Potts model of statistical mechanics [44] is a partic-

ular case of the GCWP model with r = 2.

Let q be a fixed integer and define Λ = {e1,e2, . . . ,eq}, where ek are the q

standard basis vectors of R
q. A configuration of the model has the form ω =

(ω1,ω2, . . . ,ωn) 2 Λ n. We will consider a configuration on a graph with n vertices

and let Xi(ω)=ωi be the spin at vertex i. The random variables Xi’s for i= 1,2, . . . ,n
are independent and identically distributed with common distribution ρ .

For the generalized Curie-Weiss-Potts model, for r � 2, the interaction represen-

tation function, defined in general in (25), has the form

H(z) =�
1

r

q

∑
j=1

zr
j

and the generalized Curie-Weiss-Potts model is defined as the Gibbs measure

Pn,β ,r(B) =
1

Zn(β )

Z

B
exp{�βnH (Ln(ω))}dPn (90)

where Ln(ω) is the empirical measure defined in (34).

From Subsection 13.3, recall the equilibrium phase structure of the GCWP

model. Specifically, as stated in Theorem 13.12, there exists a critical value βc(q,r)
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such that (a) for (q,r) 2 {2}⇥ [2,4], the model undergoes a continuous phase tran-

sition from the single phase to the multiple phase at βc(q,r), and (b) in the com-

plementary parameter region, the model undergoes a first-order phase transition at

βc(q,r).

For the GCWP model, the function g
H,β
`

(z) defined in general in (40) has the form

g
H,β
k (z) = [∂kΓ ] (β∇H(z)) = [∂kΓ ] (β z) =

eβ zr�1
k

eβ zr�1
1 + . . .+ eβ zr�1

q

.

For the remainder of this section, we will replace the notation, and refer to gH,β (z) =�
g

H,β
1 (z), . . . ,g

H,β
q (z)

�
as simply gr(z) =

�
gr

1(z), . . . ,g
r
q(z)

�
. As we will prove next,

the rapid mixing region for the GCWP model is defined by the following value.

βs(q,r) := sup{β � 0 : gr
k(z)< zk for all z 2 P such that zk 2 (1/q,1]} . (91)

Lemma 21.1 If βc(q,r) is the critical value derived in [33] and defined in Theorem

13.12, then

βs(q,r) βc(q,r)

Proof. We will prove this lemma by contradiction. Suppose βc(q,r)< βs(q,r). Then

there exists β such that

βc(q,r)< β < βs(q,r).

Then, by Theorem 13.12, since βc(q,r) < β , there exists u > 0 satisfying the fol-

lowing inequality

u <
1� e∆(u)

1+(q�1)e∆(u)
, (92)

where ∆(u) := � β
qr�1

⇥
(1+(q� 1)u)r�1 � (1� u)r�1

⇤
. Here, the above inequality

(92) rewrites as

e∆(u) = exp

(
β

"✓
1�u

q

◆r�1

�

✓
1+(q�1)u

q

◆r�1
#)

<
1�u

(q�1)u+1
. (93)

Next, we substitute λ = (1�u) q�1
q

into the above inequality (93), obtaining

exp

(
β

"✓
λ

q�1

◆r�1

� (1�λ )r�1

#)
<

λ

(1�λ )(q�1)
. (94)

Now, consider

z =

✓
1�λ ,

λ

q�1
, . . . ,

λ

q�1

◆
.
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Observe that z1 = 1� λ = 1� (1� u) q�1
q

= 1+u(q�1)
q

> 1
q

as u > 0. Here, the

inequality (94) can be consequently rewritten in terms of the above selected z as

follows

z1 = 1�λ <
eβ (1�λ )r�1

eβ (1�λ )r�1
+(q�1)eβ

�
λ

q�1

�r�1
= gr

1(z),

thus contradicting β < βs(q,r). Hence βs(q,r) βc(q,r).

Combining Theorem 13.12 and Lemma 21.1 yields that for parameter values

(q,r) in the continuous phase transition region βs(q,r) = βc(q,r), whereas in the

first-order phase transition region, βs(q,r) is strictly less than βc(q,r). This relation-

ship between the equilibrium transition critical value and the mixing time transition

critical value was also proved for the mean-field Blume-Capel model discussed in

section 9.2. This appears to be a general distinguishing feature between models that

exhibit the two distinct types of phase transition. We now prove rapid mixing for

the generalized Curie-Weiss-Potts model for β < βs(q,r) using the aggregate path

coupling method derived in section 7.

We state the lemmas that we prove below, and the main result for the Glauber

dynamics of the generalized Curie-Weiss-Potts model, a Corollary to Theorem 20.2.

Lemma 21.2 Property 1 and Property 2 are satisfied for all β < βs(q,r).

Corollary 21.3 If β < βs(q,r), then

tmix(ε) = O(n logn).

Proof. Property 2 required for Theorem 20.2 is satisfied by Lemma 21.2.

Proof of Lemma 21.2. First, we prove that the family of straight lines connecting to

the equilibrium point zβ = (1/q, . . . ,1/q) is a neo-geodesic family as it was defined

following Property 1. Specifically, for any z = (z1,z2, . . . ,zq) 2 P define the line

path ρ connecting z to zβ by

z(t) =
1

q
(1� t)+ zt, 0  t  1 (95)

Then, along this straight-line path ρ , the aggregate g-variation has the form

D
g
ρ(z,zβ ) :=

q

∑
k=1

Z

ρ

���
D

∇gr
k(y),dy

E���=
q

∑
k=1

Z 1

0

����
d

dt
[gr

k(z(t))]

���� dt. (96)

Next, for all k = 1,2, . . . ,q and t 2 [0,1], denote

z(t)k =
1

q
(1� t)+ zkt
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Then

gr
k(z(t)) =

e
β
�
(1/q)(1�t)+zkt

�r�1

∑
q
j=1 e

β
�
(1/q)(1�t)+z jt

�r�1
(97)

and

d

dt

⇥
gr

k(z(t))
⇤
= β (r�1)gr

k(z(t))
h✓1

q
(1� t)+ zkt

◆r�2✓
zk �

1

q

◆
�hz�zβ ,g

r(z(t))iρ

i

(98)

where hz� zβ ,g
r(z(t))iρ is the weighted inner product

hz� zβ ,g
r(z(t))iρ :=

q

∑
j=1

gr
j(z(t))

✓
zk �

1

q

◆✓
1

q
(1� t)+ zkt

◆r�2

Now, observe that for z(t) as in (95) with z 6= zβ , the inner product h(z�zβ ),g
r(z(t))iρ

is monotonically increasing in t since

d

dt
hz� zβ ,g

r(z(t))iρ � β (r�1)Vargr

 ✓
zk �

1

q

◆✓
1

q
(1� t)+ z jt

◆r�1
!

> 0

where Vargr(·) is the variance with respect to gr.

So hz�zβ ,g
r(z(t))iρ begins at hz�zβ ,g

r(z(0))iρ = hz�zβ ,zβ i= 0 and increases

for all t 2 (0,1).

The above monotonicity yields the following claim about the behavior of gr
k(z(t))

along the straight-line path ρ .

(a)If zk  1/q, then gr
k(z(t)) is monotonically decreasing in t.

(b)If zk > 1/q, then gr
k(z(t)) has at most one critical point t⇤k on (0,1).

The above claim (a) follows immediately from (98) as hz� zβ ,g
r(z(t))iρ > 0 for

t > 0. Claim (b) also follows from (98) as its right-hand side, zk � 1/q > 0 and

hz� zβ ,g
r(z(t))iρ is increasing. Thus there is at most one point t⇤k on (0,1) such

that d
dt

⇥
gr

k(z(t))
⇤
= 0.

Next, define

Az = {k : zk > 1/q}

Then the aggregate g-variation can be split into

D
g
ρ(z,zβ ) = ∑

k2Az

Z 1

0

����
d

dt
[gr

k(z(t))]

���� dt + ∑
k/2Az

Z 1

0

����
d

dt
[gr

k(z(t))]

���� dt

For k /2 Az, claims (a) and (b) imply
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Z 1

0

����
d

dt
[gr

k(z(t))]

���� dt =�
Z 1

0

d

dt
[gr

k(z(t))]dt = gr
k(z(0))�gr

k(z(1)) =
1

q
�gr

k(z)

For k 2 Az, let tk = max{t⇤k ,1} ,where t⇤k is defined in (b). Then, we have

Z 1

0

����
d

dt
[gr

k(z(t))]

���� dt =
Z t⇤k

0

d

dt
[gr

k(z(t))]dt�
Z 1

t⇤
k

d

dt
[gr

k(z(t))]dt = 2gr
k(z(t

⇤
k ))�gr

k(z)�
1

q

Combining the previous two displays, we get

D
g
ρ(z,zβ ) = ∑

k2A

✓
2gr

k(z(t
⇤
k ))�gr

k(z)�
1

q

◆
+ ∑

k/2A

✓
1

q
�gr

k(z)

◆

= 2 ∑
k2A

✓
gr

k(z(t
⇤
k ))�

1

q

◆

Since β < βs and k 2 Az, we have

gr
k(z(t

⇤
k ))< z(t⇤k )k  z(1)k = zk

and we conclude that

D
g
ρ(z,zβ )< 2 ∑

k2A

✓
zk �

1

q

◆
= kz� zβk1

Thus
dg(z,zβ )

kz� zβk1


D
g
ρ(z,zβ )

kz� zβk1
< 1 for all z 6= zβ in P. (99)

Denote z0 = (z01, . . . ,z
0
q) = z� zβ . Then by Taylor’s Theorem, we have

limsup
z!zβ

kgr(z)�gr(zβ )k1

kz� zβk1
= limsup

z!zβ

q

∑
k=1

������
exp{β zr�1

k
}

q

∑
j=1

exp{β zr�1
j }

� 1
q

������

kz� zβk1

= lim
z0!0

q

∑
k=1

�����
β (r�1)

⇣
1
q

⌘r�2
z0k+O

�
kz0k2

2

�

q+O
�
kz0k2

2

�
�����

kz0k1

=
β (r�1)

qr�1
. (100)

Recall that βs(q,r)  βc(q,r) was shown in Lemma 21.1, and βc(q,r) 
qr�1

r�1
was

shown in the proof of Lemma 5.4 of [33]. Therefore, β < βs(q,r) 
qr�1

r�1
and the

last expression in (100) is less than 1. We conclude that
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limsup
z!zβ

D
g
ρ(z,zβ )

kz� zβk1
= limsup

z!zβ

kgr(z)�gr(zβ )k1

kz� zβk1


β (r�1)

qr�1
< 1.

This, in turn, guarantees that

limsup
z!zβ

dg(z,zβ )

kz� zβk1
< 1. (101)

Thus, combining together (99) and (101), we have Property 1 proven for the GCWP

model. Moreover this proves that the family of straight line segments ρ is a neo-

geodesic family (see definition following Property 1). Indeed, there is δ 2 (0,1)
such that

⇢
ρ : z(t) =

1

q
(1� t)+ zt, z 2 P

�
is a NGδ family of smooth curves,

i.e. 8z 6= zβ in P , and corresponding ρ : z(t) = 1
q
(1� t)+ zt,

D
g
ρ(z,zβ )

kz� zβk1
 1�δ/2

Since the family of straight line segments ρ , Property 2 follows. ⇤

Finally, the region of exponentially slow mixing β > βs(q,r) can be shown using

the standard approach of bottleneck ratio or Cheeger constant method.





Chapter 8

Aggregate path coupling: beyond Kn

In this section, based on the results in [31], we illustrate the strength and generality

of the aggregate path coupling method for proving rapid mixing by applying it to

the Potts model on the bipartite graph which differs from the traditional mean-field

model where every spin interacts with every other spin; i.e. interactions are defined

by the complete graph. Recent studies of the dynamics and equilibrium structure of

the related model, the Ising model on general bipartite graphs, include [28, 11]. The

contributions of [31] first include the large deviation principle for the Potts model

on the bipartite graph that yields the equilibrium phase transition structure of the

model and then identifying the interface value βs at which the Glauber dynamics

exhibits rapid mixing for β < βs using the method of aggregate path coupling. The

(somewhat surprising) result in Lemma 23.1 is that the interface value βs for the

Potts model on the bipartite graph Kn,n is equal to the corresponding value for the

Curie-Weiss-Potts model, which is the Potts model on the complete graph [13].

22 Coupling of Glauber dynamics for the bipartite Potts model

We begin by recalling the definition of a discrepancy distance for a pair of configu-

rations ω and ω 0 in Λ n as used in Section 18 of Chapter 7:

d(ω,ω 0) =
n

∑
j=1

1{ω j 6=ω 0
j}
.

For the Potts model on the bipartite graph Kn,n, we define the corresponding metric

on the configuration space Λ n ⇥Λ n. For a pair of configurations, (σ ,τ) and (σ 0,τ 0)
in Λ n ⇥Λ n, we define the distance between them as

87
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d
�
(σ ,τ),(σ 0,τ 0)

�
=

n

∑
j=1

1{σ( j) 6=σ 0( j)}+
n

∑
j=1

1{τ( j)6=τ 0( j)},

= d(σ ,σ 0)+d(τ,τ 0).

Let Xt = (X1
t ,X

2
t ) and Yt = (Y 1

t ,Y
2

t ) be two copies of the Glauber dynamics of the

bipartite Potts model. Here, we describe the standard greedy coupling of Xt and Yt as

in Section 5 in Chapter 2. Suppose that Xt = (σ ,τ) and Yt = (σ 0,τ 0). Once again, for

both copies of the process, we use the same choice variable Θ that selects a vertex

at random, uniformly from the 2n vertices in Kn,n.

Conditioning on Θ selecting vertex i on the left side of the bipartite graph Kn,n,

we erase the spin at the selected vertex in both processes, and replace it with a new

one according to the maximal coupling of the following probability measures

ν =
q

∑
k=1

q`i,σ ,τ(e
k)δek and µ =

q

∑
k=1

q`i,σ 0,τ 0(e
k)δek

as constructed in Section 3 of Chapter 2.

Similarly, conditioning on Θ selecting vertex i on the right side of Kn,n, we erase

the spin at the selected vertex in both processes, and replace it with a new one

according to the maximal coupling of the following probability measures

ν =
q

∑
k=1

qr
i,σ ,τ(e

k)δek and µ =
q

∑
k=1

qr
i,σ 0,τ 0(e

k)δek .

The update probabilities, q`i,σ ,τ(e
k) and qr

i,σ ,τ(e
k) were defined in (46) and (47) re-

spectively.

For the above greedy coupling process (Xt ,Yt), we let

dK

�
(σ ,τ),(σ 0,τ)

�
:= E[d(Xt+1,Yt+1) |Xt = (σ ,τ),Yt = (σ 0,τ 0)]

denote the mean coupling distance.

Recall that in the greedy coupling construction, conditioned on Θ selecting ver-

tex i on the left side of Kn,n, the probability of the spin updating to ek in exactly one

of the two process (but not in the other) is

���q`i,σ ,τ(e
k)�q`i,σ 0,τ 0(e

k)
��� .

Analogously, conditioned on Θ selecting vertex i on the right side of Kn,n, the prob-

ability of the spin updating to ek in exactly one of the two process is

���qr
i,σ ,τ(e

k)�qr
i,σ 0,τ 0(e

k)
��� .

Thus, by Corollary 10.4 of Lemma 10.3,
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kq`v,σ ,τ �q`v,σ 0,τ 0kTV =
q

∑
k=1

���q`v,σ ,τ(e
k)�q`v,σ 0,τ 0(e

k)
���

=
q

∑
k=1

���gH,β
k (Ln(τ

0))�g
H,β
k (Ln(τ))

���+O

✓
1

n2

◆
(102)

and

kqr
v,σ ,τ �qr

v,σ 0,τ 0kTV =
q

∑
k=1

���qr
v,σ ,τ(e

k)�qr
v,σ 0,τ 0(e

k)
���

=
q

∑
k=1

���gH,β
k (Ln(σ

0))�g
H,β
k (Ln(σ))

���+O

✓
1

n2

◆
. (103)

Observe that for different values of v, the right hand side in both (102) and (103)

will differ by only a magnitude of order O
⇣

1
n2

⌘
, which is incrementally small for

this computation.

Therefore, as gH,β : Pq !R is in C 2, for all n large enough there exists c > 0 such

that if

ε k Ln(σ ,τ)�Ln(σ
0,τ 0) k1< 2ε,

then for all v 2 {1,2, . . . ,n},

����� kq`v,σ ,τ �q`v,σ 0,τ 0kTV �
1

2

q

∑
k=1

���
D

Ln(τ
0)�Ln(τ),∇g

H,β
k (Ln(τ))

E���
�����< cε2 (104)

and
����� kqr

v,σ ,τ �qr
v,σ 0,τ 0kTV �

1

2

q

∑
k=1

���
D

Ln(σ
0)�Ln(σ),∇g

H,β
k (Ln(σ))

E���
�����< cε2. (105)

23 Bounding mean coupling distance

In this section, the rapid mixing region for the bipartite Potts model will be deter-

mined by the following parameter value:

βs(q) = sup

⇢
β � 0 :

g
H,β
k

(x)<yk and g
H,β
k

(y)<xk for all

(x,y)2Pq⇥Pq such that xk,yk2
⇣

1
q ,1
i
�

(106)

Lemma 23.1 If βc(q) is the critical value defined in Theorem 13.16, then

βs(q) βc(q).
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Proof. Recall the corresponding βs value for the Curie-Weiss-Potts model as stated

in Section 21 of Chapter 7, and originally derived in [13]. In this section, βs value

for the Curie-Weiss-Potts model will be denoted by

βCWP
s (q) = sup

⇢
β � 0 : g

H,β
k (x)< xk for all x 2 Pq such that xk 2

✓
1

q
,1

��
.

Also, in [13], the inequality βCWP
s (q)< βc(q) was proved, where βc(q) is the same

for the Curie-Weiss-Potts model as for the bipartite Potts model, as shown in Theo-

rem 13.16.

Next, we prove that βs(q)= βCWP
s (q). We partition the values of β into the following

three subsets,

B� =

⇢
β � 0 :

g
H,β
k

(x)<yk and g
H,β
k

(y)<xk for all

(x,y)2Pq⇥Pq such that xk,yk2
⇣

1
q ,1
i

and yk<xk

�
,

B+ =

⇢
β � 0 :

g
H,β
k

(x)<yk and g
H,β
k

(y)<xk for all

(x,y)2Pq⇥Pq such that xk,yk2
⇣

1
q ,1
i

and yk>xk

�
,

and

B0 =

⇢
β � 0 :

g
H,β
k

(x)<yk and g
H,β
k

(y)<xk for all

(x,y)2Pq⇥Pq such that xk,yk2
⇣

1
q ,1
i

and yk=xk

�
,

and note that supβ B� = supβ B+  supβ B0 = βCWP
s (q)  βs(q). Furthermore, we

have that

B�[B0 [B+ ✓

⇢
β � 0 : g

H,β
k (z)< zk for all z 2 Pq such that zk 2

✓
1

q
,1

��
.

Thus βs(q) βCWP
s (q). This concludes the proof of the Lemma 23.1.

Next, we need to establish aggregate contraction (23) and concentration inequal-

ity (24) conditions required in Theorem 8.1 in order to apply the aggregate path

coupling method and bound the mixing time for the Glauber dynamics of the bi-

partite Potts model. We observe that the measure concentration result of the large

deviation upper bound (53) makes it sufficient to show contraction (24) of the mean

coupling distance between a coupled process where one starts in an arbitrary con-

figuration and the other starts in a configuration for which the macroscopic quantity

for the bipartite Potts model, the pair of empirical vectors, is near equilibrium; i.e.

k
�
Ln(σ),Ln(τ)

�
� (zβ ,zβ ) k1< ε 0.

Second, in order to prove contraction (23) of the mean coupling distance of a

coupling of the Glauber dynamics of the bipartite Potts model where one starts near

equilibrium, we aggregate the intermediate distances over a monotone path in the

configuration space Λ n⇥Λ n defined below. The aggregation over the discrete path is

carried out by integrating over an approximating continuous path in the continuous

space Pq ⇥Pq. The details of this second step are provided next.
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Let (σ ,τ) and (σ 0,τ 0) be configurations in Λ n ⇥Λ n. Consider a path π in Λ n ⇥
Λ n connecting configurations (σ ,τ) and (σ 0,τ 0),

π : (σ ,τ) = (x1
0,x

2
0),(x

1
1,x

2
1), . . . ,(x

1
r ,x

2
r ) = (σ 0,τ 0).

Definition 23.2 We say that π is a monotone path if

(i)
r

∑
i=1

d
�
(x1

i�1,x
2
i�1),(x

1
i ,x

2
i )
�
= d
�
(σ ,τ),(σ 0,τ 0)

�
;

(ii) for each k 2 {1,2, . . . ,q} and j 2 {1,2}, the kth coordinate of Ln(x
j
i ), denoted by

Ln,k(x
j
i ) is monotonic as i increases from 0 to r.

Given configurations (σ ,τ) and (σ 0,τ 0). By the equations (46) and (47), there exists

κle f t � 0 and κright � 0 such that for all v 2 {1, . . . ,n},

kq`v,σ �q`v,τkTV = κle f t +O

✓
1

n

◆
and kqr

v,σ �qr
v,τkTV = κright +O

✓
1

n

◆
.

Then, the mean coupling distance after one iteration of the coupling process starting

in (σ ,τ) and (σ 0,τ 0) is bounded as follows

dK

�
(σ ,τ),(σ 0,τ)

�


✓
1�

1

2n

◆
d
�
(σ ,τ),(σ 0,τ 0)

�
+

1

2
κle f t +

1

2
κright +O

✓
1

n

◆

 d
�
(σ ,τ),(σ 0,τ 0)

�
"

1�
1

2n

 
1�

κle f t +κright +O
�

1
n

�

d
�
(σ ,τ),(σ 0,τ 0)

�
/n

!#

(107)

whereas the original distance was

d
�
(σ ,τ),(σ 0,τ 0)

�
= d(σ ,σ 0)+d(τ,τ 0).

Now, fix ε > 0. Suppose configurations (σ ,τ) and (σ 0,τ 0) are such that

���Ln(σ),Ln(τ)
�
�
�
Ln(σ

0),Ln(τ
0)
���

1
� ε,

and let π : (σ ,τ) = (x1
0,x

2
0),(x

1
1,x

2
1), . . . ,(x

1
r ,x

2
r ) = (σ 0,τ 0) be a monotone path con-

necting (σ ,τ) and (σ 0,τ 0) such that for each i 2 {1, . . . ,r},

ε 
���Ln(x

1
i ),Ln(x

2
i )
�
�
�
Ln(x

1
i�1),Ln(x

2
i�1)

���
1
< 2ε. (108)

Then, by (104) and (105), we have
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kq`v,σ ,τ �q`v,σ 0,τ 0kTV 
r

∑
i=1

kq`
v,x1

i ,x
2
i
�q`

v,x1
i�1,x

2
i�1

kTV (109)


1

2

q

∑
k=1

r

∑
i=1

���
D

Ln(x
2
i )�Ln(x

2
i�1),∇g

H,β
k (Ln(x

2
i�1))

E���+ cε

and

kqr
v,σ ,τ �qr

v,σ 0,τ 0kTV 
r

∑
i=1

kqr
v,x1

i ,x
2
i
�qr

v,x1
i�1,x

2
i�1

kTV (110)


1

2

q

∑
k=1

r

∑
i=1

���
D

Ln(x
1
i )�Ln(x

1
i�1),∇g

H,β
k (Ln(x

1
i�1))

E���+ cε.

Putting together equations (107), (109) and (110), we obtain the following bound

on the mean distance for a coupling process starting in configurations (σ ,τ) and

(σ 0,τ 0):

dK

�
(σ ,τ),(σ 0,τ)

�
 d
�
(σ ,τ),(σ 0,τ 0)

�
"

1�
1

2n

 
1�

S1 +S2 +4cε +O
�

1
n

�

2d
�
(σ ,τ),(σ 0,τ 0)

�
/n

!#

 d
�
(σ ,τ),(σ 0,τ 0)

�
"

1�
1

2n

 
1�

S1 +S2 +4cε +O
�

1
n

�

k Ln(σ)�Ln(σ 0) k1 + k Ln(τ)�Ln(τ 0) k1

!#
,

(111)

where

S1 =
q

∑
k=1

r

∑
i=1

���
D

Ln(x
1
i )�Ln(x

1
i�1),∇g

H,β
k (Ln(x

1
i�1))

E���

and

S2 =
q

∑
k=1

r

∑
i=1

���
D

Ln(x
2
i )�Ln(x

2
i�1),∇g

H,β
k (Ln(x

2
i�1))

E��� .

Notice that here, (109) and (110) are obtained by aggregating (104) and (105) along

the path π .

24 Aggregate path coupling for the bipartite Potts model

For a given β < βs(q), our goal is to find a monotone path with which we can

show contraction in the equation (111). The answer to this is in finding a continuous

monotone path (γ,eγ) in Pq ⇥Pq connecting
�
Ln(σ),Ln(τ)

�
and

�
Ln(σ

0),Ln(τ
0)
�
,

such that
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q

∑
k=1

R
γ

���h∇g
H,β
k (x),dxi

��� +
q

∑
k=1

R

eγ

���h∇g
H,β
k (y),dyi

���

k Ln(σ)�Ln(σ 0) k1 + k Ln(τ)�Ln(τ 0) k1
< 1 (112)

Although (γ,eγ) is a continuous path in continuous space Pq ⇥Pq, it is used for

finding a monotone path

π : (σ ,τ) = (x1
0,x

2
0),(x

1
1,x

2
1), . . . ,(x

1
r ,x

2
r ) = (σ 0,τ 0)

in Λ n ⇥Λ n connecting configurations (σ ,τ) and (σ 0,τ 0) such that

�
Ln(x

1
0),Ln(x

2
0)
�
,
�
Ln(x

1
1),Ln(x

2
1)
�
, . . . ,

�
Ln(x

1
r ),Ln(x

2
r )
�

in Pq ⇥Pq are positioned along (γ,eγ) and satisfy (108). The quantities S1 and S2

defined in (111) are the Riemann sums approximating
q

∑
k=1

R
γ

���h∇g
H,β
k (x),dxi

��� and

q

∑
k=1

R

eγ

���h∇g
H,β
k (y),dyi

��� respectively. Therefore we obtain

S1 +S2 +4cε +O
�

1
n

�

k Ln(σ)�Ln(σ 0) k1 + k Ln(τ)�Ln(τ 0) k1
< 1,

for ε small enough and n large enough. This will imply contraction of the mean

coupling distance dK

�
(σ ,τ),(σ 0,τ)

�
in (111).

The above inequality (112) motivates the definition of the aggregate g-variation be-

tween a pair of points (x0,y0) and (x00,y00) in Pq⇥Pq along a continuous monotone

path (γ,eγ) defined as follows

D
g

(γ,eγ)((x
0,y0),(x00,y00)) =

q

∑
k=1

Z

γ

���h∇g
H,β
k (x),dxi

��� +
q

∑
k=1

Z

eγ

���h∇g
H,β
k (y),dyi

���

= D
g
γ(x

0,x00) + D
g

eγ(y
0,y00),

where D
g
γ(x

0,x00) =
q

∑
k=1

R
γ

���h∇g
H,β
k (x),dxi

��� was defined (96).

From Theorem 13.16 and Lemma 23.1 we have that for β < βs, the point (zβ ,zβ ) 2
Pq ⇥Pq is the unique equilibrium macrostate. Thus, we have the next proposition

that follows immediately from Lemma 21.2.

Proposition 24.1 Suppose β < βs(q) and let (zβ ,zβ ) be the unique equilibrium

macrostate. Then

limsup
(x,y)!(zβ ,zβ )

max

(
k gH,β (x)�gH,β (zβ ) k1

k x� zβ k1
,
k gH,β (y)�gH,β (zβ ) k1

k y� zβ k1

)
< 1
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Proof. By Lemma 23.1 we have that βs(q) is equal to the mixing time critical value

for the Curie-Weiss-Potts model. As gH,β (x) is the same function for the Curie-

Weiss-Potts model, and zβ =
⇣

1
q
, . . . , 1

q

⌘
, employing Lemma 21.2 of the preceding

chapter and equation (88) obtained from Property 1, we conclude the proof of the

Proposition 24.1.

We now state and prove the main contraction result for the mean coupling distance

where one of the coupled processes starts near the equilibrium.

Lemma 24.2 Suppose β < βs(q). Let (X ,Y ) be a coupling of the Glauber dynam-

ics of the bipartite Potts model starting in configurations (σ ,τ) and (σ 0,τ 0), and

let (zβ ,zβ ) be the single equilibrium macrostate of the corresponding canonical en-

semble Pn,n,β defined in (42). Then there exists an α > 0 and ε 0 small enough such

that for n large enough,

dK

�
(σ ,τ),(σ 0,τ)

�
 e�α/nd

�
(σ ,τ),(σ 0,τ 0)

�
,

whenever k
�
Ln(σ),Ln(τ)

�
� (zβ ,zβ ) k1< ε 0.

Proof. We will follow the steps in the proof of Lemma 20.1. Let β < βs.

Case I. Suppose ε > 0 is sufficiently small. Consider a pair of configurations

(σ ,τ) and (σ 0,τ 0) with magnetizations

�
Ln(σ),Ln(τ)

�
= (z,w) and

�
Ln(σ

0),Ln(τ
0)
�
= (z0,w0).

Also, consider a straight line (γ,eγ) connecting (zβ ,zβ ) to (z0,w0), constructed as

follows

γ = {x(t) = (1�t)zβ +tz0 : t 2 [0,1]} and eγ = {y(t) = (1�t)zβ +tw0 : t 2 [0,1]}.

Then, as it was proved in Lemma 21.2, there exists δ 2 (0,1) such that

D
g

(γ,eγ)((x,y),(zβ ,zβ ))

k x� zβ k1 + k y� zβ k1
=

D
g
γ(x,zβ )+D

g

eγ(y,zβ )

k x� zβ k1 + k y� zβ k1
 1�

δ

2
.

Given ε > 0 and ε 0 > 0. Suppose that

k(z0,w0)� (zβ ,zβ )k1 � ε + ε 0 and k(z,w)� (zβ ,zβ )k1 < ε 0.

Then, provided ε and ε 0/ε are sufficiently small, for all n large enough, there is a

discrete monotone path in Pn ⇥Pn,

(z,w) = (z0,w0),(z1,w1), . . . ,(zr,wr) = (z0,w0),

approximating (dotting) the continuous monotone path (γ,eγ), such that

ε  k zi � zi�1 k1 + k wi �wi�1 k1 < 2ε for i = 1,2, . . . ,r,
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for which

q

∑
k=1

r

∑
i=1

���
D

zi � zi�1,∇g
H,β
k (zi�1)

E���+
q

∑
k=1

r

∑
i=1

���
D

wi �wi�1,∇g
H,β
k (wi�1)

E���

k z0� z k1 + k w0�w k1
< 1�

δ

3
.

(113)

Next, one can construct a monotone path as in Definition 23.2

π : (σ ,τ) = (x1
0,x

2
0),(x

1
1,x

2
1), . . . ,(x

1
r ,x

2
r ) = (σ 0,τ 0).

connecting configurations (σ ,τ) and (σ 0,τ 0) such that

�
Ln(x

1
i ),Ln(x

2
i )
�
= (zi,wi).

Hence, by equation (111),

dK

�
(σ ,τ),(σ 0,τ)

�
d
�
(σ ,τ),(σ 0,τ 0)

�

⇥

"
1�

1

2n

 
1�

S1 +S2 +4cε +O
�

1
n

�

k Ln(σ)�Ln(σ 0) k1 + k Ln(τ)�Ln(τ 0) k1

!#

d((σ ,σ 0),(τ,τ 0))


1�

δ/3�δ/12

2n

�

=d((σ ,σ 0),(τ,τ 0))


1�

δ

8n

�

as 1
2n

4cε+O( 1
n )

k(z0,w0)�(z,w)k1
 δ/12 for ε small enough and n large enough, where we

used the same quantities S1 and S2 as defined following (111).

Case II. Let ε and ε 0 be as in Case I. Suppose
�
Ln(σ),Ln(τ)

�
= (z,w) and�

Ln(σ
0),Ln(τ

0)
�
= (z0,w0) such that k(z0,w0)� (zβ ,zβ )k1 < ε + ε 0 and k(z,w)�

(zβ ,zβ )k1 < ε 0.

Then, by Proposition 24.1, there exists a δ 0 > 0 such that for all n large enough,

1�
1

2n

 
1�

kgH,β
�
Ln(σ),Ln(τ)

�
�gH,β

�
Ln(σ

0),Ln(τ
0)
�
k1

k Ln(σ)�Ln(σ 0) k1 + k Ln(τ)�Ln(τ 0) k1

!
 1�

δ 0

n

for all configurations of spins. Therefore, similarly to (107), equations (102) and

(103) imply
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dK

�
(σ ,τ),(σ 0,τ)

�
 d((σ ,σ 0),(τ,τ 0))


1�

δ 0

n

�
+O

✓
1

n2

◆

 d((σ ,σ 0),(τ,τ 0))


1�

δ 0

2n

�
.

This, concludes the proof of Lemma 24.2.

Determining the parameter regime where a model undergoes rapid mixing is of

major importance, as it is in this region that the application of the Glauber dynamics

is physically feasible. This rapid mixing parameter regime given in the theorem

below is the main result of this section.

Theorem 24.3 Let βs(q) be as defined in formula (106). Then for β < βs(q), the

mixing time of the Glauber dynamics for the bipartite Potts model satisfies

tmix(ε) = O(n logn).

Proof. For all sufficiently small ε 0 > 0 and for all n large enough, let

Aε 0,n = {(σ ,τ) 2 Λn ⇥Λn : k
�
Ln(σ),Ln(τ)

�
� (zβ ,zβ ) k1< ε 0}.

Then, the contraction result in Lemma 24.2 implies the existence of α > 0 such

that the aggregate contraction condition (23) in Theorem 8.1 is satisfied for small

enough ε 0 > 0 and large enough n.

Now, it is known from Lemma 23.1 that βs(q) βc(q). Thus, β < βs(q) implies that

Eβ = {(zβ ,zβ )} by Theorem 13.16. By the large deviation principle Theorem 13.14,

the probability measure Pn,n,β is concentrated on the configurations (σ ,τ)2Λn⇥Λn

with magnetization
�
Ln(σ),Ln(τ)

�
in the neighborhood of (zβ ,zβ ) in Pq ⇥Pq.

Therefore, the complement Ac
ε 0,n of Aε 0,n is bounded above by

Pn,n,β (A
c
ε 0,n)< e

� n
ξ 0

Iβ (ε
0)

for ξ 0 > 1.

Hence, the concentration inequality (24) in Theorem 8.1 is established with ζ (n) =

e
n
ξ 0

Iβ (ε
0)

, and Theorem 8.1 implies the statement of Theorem 24.3.

Finally, the standard bottleneck ratio argument using the Cheeger constant (see

[37]) proves slow mixing for β > βs(q). Thus, the above result provides the bound-

ary point for the rapid mixing region.
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d’états, Mathématique de l’Union Interbalkanique, Volume 2, Number 77-105, 78–80 (1938)

19. M. Dyer, L.A. Goldberg, C. Greenhill, M. Jerrum, and M. Mitzenmacher, An extension of

path coupling and its application to the Glauber dynamics for graph colorings, SIAM Journal

on Computing, 30(6), 1962-1975 (2001).

20. T. Eisele and R. S. Ellis, Multiple phase transitions in the generalized Curie-Weiss model.

Journal of Statistical Physics, Volume 52, Number 1/2, 161–207 (1988).

21. R. S. Ellis, Entropy, Large Deviations and Statistical Mechanics, Springer, New York, 1985.

Reprinted in 2006 in Classics in Mathematics.

22. R. S. Ellis, K. Haven, and B. Turkington, Large deviation principles and complete equivalence

and nonequivalence results for pure and mixed ensembles. Journal of Statistical Physics,

Volume 101, Numbers 5/6, 999–1064 (2000).
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